
Canadian Journal of Pure and Applied Sciences
Vol. 9, No. 2, pp. 3431-3439, June 2015
Online ISSN: 1920-3853; Print ISSN: 1715-9997
Available online at www.cjpas.net

VISUALIZATION APPROACH FOR SOFTWARE PROJECTS

Mustafa Hammad
Department of Information Technology, Mutah University

Al-Karak, Mutah 61710, Jordan

ABSTRACT

Software visualization helps developers to understand, compare and browse large scale information. Software projects
consist of a large number of packages, classes and methods. It is not an easy task for developers to browse source code
and get information about the project’s contents. This paper presents an approach to visualize the contents of a software
project in summarized views named BookViews. Each project is modeled as a book in which its chapters represent
packages, its sections represent classes and its pages represent methods. The visualization helps developers to understand
the internal structure of java projects, as well as, compare between projects in simple and meaningful views. A pilot
experimental study on an open source project has been conducted to evaluate BookViews. Results showed that
BookViews supports program comprehension and helps developers in understanding the contents of software projects.

Keywords: Software visualization, program comprehension, software projects.

INTRODUCTION

Software projects compose of a large number of different
artifacts. The main artifact of a software project is the
source code. In object oriented programming, the source
code consists of different components, such as packages,
classes, and methods. A software project is implemented
by many lines of code, and decomposed into a set of
packages. Each package composed of a set of classes,
and each class is responsible for specific and related
activities that are implemented as methods.

Understanding and monitoring the current status of a
project’s components is very important for software
developers and designers. In a software project, any code
changing activity requires deep understanding of the
project’s internal elements. Therefore, software
developers always need to browse the project’s contents
before modifying any part of the project. Moreover, to
analyze a software project, developers need to explore
huge information about code elements and components
structure.

For large scale software projects, with large number of
classes, browsing requires considerable amount of time
and effort. It is not an easy task to explore hundreds or
thousands lines of code to discover how these lines are
divided into packages, classes, and methods.
Furthermore, estimating the size of a software project is a

time consuming task because the developer need to count
and extract the internal contents of the project. In
addition, to know the size of a project’s packages or
classes, developers need to investigate and count the
internal components of each of them.

Another issue is in comparison between software projects.
Developers may need to compare different project sizes.
Comparison requires browsing all projects under
consideration to count their structural contents. For
instance, a developer may need to know which project has
the largest number of methods, classes, or packages.
There is a lack of tools that automatically extract all
internal contents information for a project or a set of
projects.

This paper proposes a methodology that utilizes the
advantages of software visualization to help developers in
program comprehension activities. The proposed
visualization is set to apply for software projects written
in Java programming language. To ease the process of
browsing a project and comparing different projects, this
paper proposes a visualization methodology named
BookViews. In the proposed visualization, a software
project is modeled and visualized as a book. The
generated book view is considered as a summary of the
target project. As a result, a set of different projects are
visualized as a set of books. Each book is composed of a
set of chapters and sections. The book’s chapters and
sections represent the project’s packages and classes
respectively. In addition, the visualized book’s pages *Corresponding author e-mail: hammad@mutah.edu.jo

Canadian Journal of Pure and Applied Sciences 3432

represent project’s methods.

The proposed visualization has two different views for
developers. One view is called close-book view and the
second one is called open-book view. In the close-book
view, the target project is visualized as a closed book
titled with the project name. The open-book view
visualizes a summary of the project’s contents as a table
of contents.

The BookViews visualization solves the problem of
automatic generation of visual summaries for software
projects. It saves time and effort for developers who want
to browse the contents of their projects. It also provides
summarized information about the contents of software
projects in one view. Moreover, developers can visually
compare different project sizes.

The remainder of the paper is organized as follows; the
following subsections discuss the important of software
visualization and related work. The next section presents
the proposed visualization with an example. After that,
the evaluation of the proposed visualizations is discussed,
followed by conclusion and future work.

Why software visualization?
In large scale software projects, there is a huge
information that are related to system development and
evolution, which is hard to collect, measure, and analyze
(Sommerville et al., 2012). Moreover, extracting useful
information from a set of software data is a challenging
task and it is inherently costly. For example, to extract
relationships among a project’s components or artifacts,
developers need to explore and measure each component
in the target project to understand which component is
communicating with which. Furthermore, to compare
two sets of information, there is a need to develop
mathematical representations. However, these
mathematical representation need to be analyzed and
proved carefully. Software visualization is one way to
overcome these issues.

Visualizing any information related to software projects is
becoming more popular way to understand large scale
software systems (Maletic et al., 2002). Software
visualization is used to provide a visual representation of
software information. By providing visual objects,
software projects’ designers or managers can easily get
too much detailed information. In addition, software
developers can discover related information and clusters
without any formal equations or statistical data. This is
because the generated visual objects are easy to
understand, follow, and compare.

Software visualization is used to provide a visual
representation for different aspects of software projects
evolution (Novais et al., 2013). For instance,

visualization techniques can be used to visualize source
code, documentations, software archives, code changes,
project’s developers, and bugs. The visualization process
is a methodology to visualize a software project’s aspects
in interactive or animated visual representations. The
methodology is set to find relationships among different
information of the development process. The visualized
information can be static, such as project’s structure and
size, or dynamic, such as execution behaviour and
evolution. This paper focuses on visualizing static
information of software projects.

The goal of software visualization is to support program
comprehension. For instance, understanding software
projects is easier when visualizing its structure and
internal parts in comprehensive and representative one,
two, or three dimensional views. Usually, software
visualization is used as a tool or technique to explore and
analyze software system information. This paper
proposes a visualization methodology, called BookViews
that visualize the contents of software projects. The
generated views of the proposed visualization are easy to
understand and provide rich, useful, and detailed
information in a graphical way.

Related work
Software visualization can be applied in different
methodologies. For example, Lanza and Ducasse (2001)
presented a novel categorization of classes and a
visualization of the classes, which called the class
blueprint. The class blueprint visualizes the internal
structure of classes. The focus of the visualization is on
the static structure of classes and the way they make use
of inheritance and leave out other collaboration aspects
that is addressed by BookViews.

Maletic et al. (2001) described a system for visualizing
object-oriented software in a Virtual Reality
Environment. They defined a visualization language
(COOL) to map C++ source code to a visual
representation. Wettel and Lanza (2008) presented a 3D
visualization approach that depicts object oriented
software systems as cities that can be explored. The
buildings in the city, which represent software artifacts,
are located according to a set of predefined rules, and thus
facilitate the establishing of visual orientation to gain
familiarity with the system.

Another visualization approach is presented by Kobayashi
et al. (2013). They developed SArF Map technique that
visualizes software architecture based on its feature. In
this visualization, each feature is visualized as a block in a
city. All classes that implement a feature are laid out as
buildings. Moreover, in a recent study, Hammad and
Rawashdeh (2014) proposed a framework to visualize
class coupling as bar charts. A single class is modeled as
a block section in the visualized bar chart. The height of

Hammad 3433

the bar represents the coupling degree, and the width of
the bar represents the size of the class. BookViews differ
from these tools by providing the ability to compare the
internal contents not the logical structure of software
projects.

In 2009, Ogawa and Ma presented a visualization
technique using a method called code_swarm. The
visualization shows the efforts of developers on software
projects. Hammad et al. (2014) presented a visualization
approach for bug reports in software repositories. The
visualization goal is to display the different status of a bug
report, as well as, the bug reports/developers relationships
by using combinations of colored shapes and arrows.

Ma (2008) developed a visualization system named
StarGate. The system visualizes the code repository and
social network of developers associated with a software
project in one integrated representation. Developers are
grouped visually into clusters corresponding to the areas
of the repository they work on the most. Links are
generated between people who communicate via email.

Alam and Dugerdil (2007) developed a visualization tool
named EvoSpaces. It represents the architecture and
metrics of complex software systems as 3D software
cities. Files and classes are represented as buildings of a
3D virtual city arranged in districts. The user can travel
through the city by flying over the buildings or walking
among them like in some video games. In 2011, Caserta
and Zendra surveyed many other 3D and 2D visualization
techniques and tools.

Some visualization techniques are used to help analyzing
software development process. For instance, DEVis tool
(Zhi and Ruhe, 2013) is an interactive tool to generate
software documentations that are related to project
evolution. Moreover, SourceVis (Anslow et al., 2013) is
a collaborative tool to visualize software artifact in multi-
touch tables and user interfaces.

In 2010 Beck and Diehl proposed a visualization
technique to represent software architecture from
descriptions that are generated from reverse engineering.
The visualization is based on a scalable adjacency matrix
representation. CoCA-Ex (Holy et al., 2013) is another
example tool that is used during reverse engineering to
visualize components with large inner connections in a
separate level by using clustering.

MATERIALS AND METHODS

Overview of the Proposed Visualization
BookViews models a software project and visualize it as a
book. The generated book graph provides a general
summary of the project’s contents. By visualizing many
projects, the final views act as a library with different

books. By using this library view, software developers
can easily compare project sizes and contents.

Usually, a book consists of a set of chapters, and each
chapter consists of a set of sections. A specific number of
pages are considered as a section length. BookViews
visualization uses this known structure of books to model
software projects. The proposed visualization models the
project’s contents and size for the developers. Structural
contents of a software project that are considered in
BookViews visualization are:
• Project title
• All package names in the target project
• All class names in each package
• Number of methods in each class

Fig. 1. Close-book View of the Proposed Visualization.

In the proposed visualization model, the contents of a
project are modeled as follows:
• The name of the target project is the title of the

generated book.
• Each package in the project is represented as a

chapter in the book.
• Each class is represented as a section in a chapter.
• Each method is represented as a single page.

The proposed visualization provides two different views;
close-book and open-book views. In close-book view, the
target project is visualized as a closed book titled with the
project name. The size of the book depends on the total
number of methods defined in the project. In open-book
view, a table of contents is generated to summarize the
contents of the project. These views are illustrated in the
following subsections.

The Close-book View
The close-book view visualizes a software project as a
closed book. This view helps to identify the size of the
target project. Figure 1 shows the proposed close-book
view structure. The size of the visualized book depends
on the number of pages, which represents the total
number of methods in the project. Usually, large projects
have large number of functionalities implemented by

No. of

No. of Methods

No. of

Canadian Journal of Pure and Applied Sciences 3434

many methods, while small projects have limited number
of methods. Moreover, the height and the width of the
visualized book represent the number of packages in the
project. Generally, developers divide a project into
multiple packages in order to make it easy to understand
and maintain. A height and width unite in the rendered
picture of a book represents a single package in the target
project. This is useful to let the developers know how
wider their projects are.

Fig. 2. Two close-book View Examples for Two Sample
Projects Named P1 and P2.

Close-book view can be used to compare between
different projects in terms of main structure and total
number of functionalities provided in a project. The user
of the BookViews tool can visualize a list of books
together to generate a library of many books view. In this
library, each book corresponds to a project with its own
size. In one view, the user can quickly compare between
projects to answer designing questions, such as:

I. What is the biggest project in term of number of
methods?

II. Which of them has the smallest number of
packages?

III. How many projects have equal number of
packages?

Another benefit for the close-book view is that it can give
the developer an overview about the relationship between
number of methods and number of packages in the
project. For example, Figure 2 shows two different
examples of close-book view for two sample projects
named P1 and P2. We can understand from Figure 2 that
first project, P1, has large number of packages and
relatively small number of methods. Therefore,
developers may be encouraged to merge some packages

together in P1 project. On the other hand, P2 project has
many methods with few packages. For the second project,
designers may start thinking of splitting some project’s
packages after seeing this close-book view generated
from BookViews tool.

The Open-book View
The second view in the proposed visualization is the
open-book view. This view visualizes the contents of a
single project. The contents of the target project are
represented as a table of contents for the visualized book.
A table of contents for a visualized book is generated by
the BookViews tool to summarize and organize the
internal structure of the target project. Usually, a table of
contents in a book consists of a set of chapters, and each
chapter contains multiple sections. In the proposed
visualization, each chapter represents a package. The title
of the chapter is the name of the package. Chapters are
ordered and numbered alphabetically. For example, a
book with 10 chapters means a project with 10 packages.

Figure 3 shows the proposed table of contents for a
visualized book. Each chapter is partitioned into a set of
sections. Sections represent classes that are defined in
that package. Sections are ordered alphabetically and
given a sequence number based on the chapter’s number.
For example, Section 3.1 means the first class in the third
package. Therefore, the total number of sections reflects
the size of a package. Project’s methods are represented
as the book’s pages. For instance, a class with four
methods is considered as a section that has four pages.
Each section (class) has its own pages (methods), which
are listed after pp. symbol next to the section name. In
Figure 3, αij is the cumulative summation of total number
of pages (methods) from Section1.1 to Section i.j, where i
is the current package/chapter, and j is the current
class/section. Formally, αij and can be described as:

Where S(k) is number of sections in Chapter k. On other
words, αij also can be described as:

Where C(k) is number of classes in Package k.

Table of Contents
• …
• Chapter i: Packagei name

• …
• Section i.j: Classij name (pp. (αij +1) - (αij + No. of methods in Classij)
• Section i.j+1: Classij+1 name (pp. (αij+1 +1) - (αij+1 + No. of methods in Classij+1)
• …

Fig. 3. The Proposed Structure of the Table of Contents in the Open-book View.

Hammad 3435

Fig. 4. Snapshot from Eclipse for Student Registration
project.

Table 1. Statistics for the sample project.

The visualized book’s pages are numbered sequentially
starting from the first method in the first class that is
defined in the first package. Therefore, the first page is in
Section 1.1. A method number depends on the order in
which it appear in the body of the class.

The open-book view that is generated by the proposed
visualization helps developers in many things. For
instance, the table of contents view is used to view names
of all packages and their classes in an ordered list.
Furthermore, developer can see names of all classes and
their sizes in one view. Moreover, developer can use the
proposed views to compare between packages and classes
based on their sizes.

A Visualization Example
This section details BookViews via a java source code
example. Consider a java project named “Student
Registration”. The project has three packages; Student,
Registration, and Database. Figure 4 shows a snapshot
from the Eclipse interface of the Student Registration
project. The project has 16 methods that are distributed
over five classes as shown in table 1.

The visualization of the project using BookViews is
shown in figure 5. The close-book view is shown in (a)
and the open-book view is shown in (b). The title of the
book is the name of the project. The table of contents
shows the detailed contents of the book. The book has
three chapters that correspond to the three packages in the

project. Also, the visualized book has five sections, one
section for each class. The first chapters are ordered
alphabetically. The Database package is given the
sequence number one, followed by Registration and
Student packages.

In each chapter, the sections are also ordered by their
names. For the Database chapter, Connection section is
given the sequence number 1.1 followed by Operations
section with sequence number 1.2. The same applies for
the Registration chapter. ManageReg section is numbered
2.1 and Registrar section is given 2.2 number.

Each method in the project is given a unique sequence
number. The numbering is given based on the sequence
number of the section and the order in which the method
appears in the body of the class. Page numbers are shown
with the names of sections (pp.). These page numbers
represents the number of methods defined in the class.
The Connection section is marked with (pp. 1-3). This
means that the Connection.java class has three methods
numbered from 1 to 3. In this example, the numbering of
methods starts from the first method defined in the body
of class Connection. The Registrar section has page
numbers (pp. 11-11), which means that Registrar.java
class has only one method.

(a) Close-book view (b) Open-book view

Fig. 5. BookViews Snapshots for the Student Registration
Project.

The total number of pages is the total number of methods
defined in the project. The open-book view enables
developers to determine which class has the largest
number of methods by looking to page numbers of
sections. From the example, class StudentReg is the
largest class because it has five methods (pp. 12-16).
They also can compare packages based on their sizes. In
this example, Student package is the smallest package
because it has only one section.

Class No. Class Name No. of Methods
(1) Connection.java 3
(2) Operations.java 4
(3) ManageReg.java 3
(4) ManageReg.java 3
(5) Registrar.java 1
(6) StudentReg.java 5

Canadian Journal of Pure and Applied Sciences 3436

The Approach
The models of the BookViews visualization are
automatically generated by a tool. The tool reads a java
project and generates its corresponding models that are
used in the visualization. BookViews generates the
models for both open and close book views for the target
project automatically. Then, the close-book view is
visualized on the screen for the user. The open-book
view is generated after clicking on the closed book. The
proposed visualization can be used as a plug-in for
Eclipse IDE, and it is implemented in two phases.

In the first phase, information about the main structural
contents of each project is extracted. This process is done
by generating the corresponding Javadoc for the target
project. Then, statically analyzed the generated Javadoc
files by a set of proposed techniques to automatically
extract and explore structural information of the project’s
contents. The generated Javadoc files, which are written
in HTML, are parsed to identify the appropriate HTML
tags that contain the project’s information.

The tool automatically browses the contents of the HTML
code for the generated Javadoc files to extract names of
packages. After that, the source file of each package is
parsed to extract the names of classes. For each class, a
list of method names is extracted, and each method is
numbered based on the order of its definition in the
project.

The second phase in the proposed approach is visualizing
the generated information. The proposed visualization
gives a summary about the contents of a software project

or a set of projects for developers. In the proposed
visualization, each project is summarized and visualized
as a virtual book in two dimensional views. Each project
is rendered as a book that contains chapters, sections, and
pages.

The main structure of the proposed visualization approach
is shown in Figure 6. As shown in Figure 6, the Javadoc
files, which are generated from the source code of the
target project, are processed by a set of processes to
automatically extract useful information for the second
phase in the approach, Project Modeler. These processes
are packages, classes, and methods extractors, which
implement the first phase in the approach.

First of all, Package Extractor traces the generated
project’s Javadoc files to know how many packages in the
project, as well as, the names of these packages. As a
result, a list of packages is generated in this process.
Secondly, Class Extractor traces the Javadoc code for
each package in the generated package list to explore its
classes. Then, Class Extractor generates a list of class
names for each package in the project. After finding
number of classes in each package, Method Extractor
calculate number of methods in each class in the
generated classes list. Finally, Project Modeler process all
generated lists to model the target project as a book.

RESULTS AND DISCUSSION

The goal of the proposed BookViews visualization is to
support program comprehension for java software
projects. Developers who view BookViews are assumed

Fig. 6. Main Components of the Proposed Visualization.

Javadoc
files

Software
Project

Classes
Extractor

Methods
Extractor

Package
Extractor

Methods Packages Classes

Close-book
View

Project
Modeler

Open-book
View

Hammad 3437

to understand the structure of the project more quickly
and more clearly. To evaluate the effectiveness of
BookViews, we did an experimental study on using
BookViews. BookViews is used to visualize selected
parts, chosen randomly, from the open source project
ArgoUML (http://argouml.tigris.org/). ArgoUML is a
tool, written in java, for modeling UML diagrams. The
generated views are checked manually and compared with
the source code to be sure about the correctness of the
generated views.

Figure 7 shows a snapshot for the BookViews interface
that show the open-book view for some contents of
package argouml\src\argouml-app\src\org\argouml\
application in ArgoUML open source project.
Developers can explore any part of the project by clicking
on a specific package on the project. In Figure 7, The
Application package is considered as a separate project
that is visualized using the open-book view as a complete
project.

Two groups of developers are used in the experiment. All
developers have a good knowledge in java and object
oriented programming. Each group consists of ten

members. The first group was given only the source code
from the ArgoUML project. The second group of
developers was given the same source code with the
BookViews tool.

The two groups were given the same set of questions that
need to be answered. The questions are about the
contents of the ArgoUML project. For each developer,
the time required to answer each question was recorded.
The questions that given to each developer are:
Q1) How many classes and packages in the given code?
Q2) How many methods in the given code?
Q3) Which class has the largest number of methods?
Q4) Which package has the largest number of classes?

The time needed to answer each question for each
developer was recorded. Then, the average time for each
developers group was generated. Figure 8 shows average
time needed to answer each question by the two groups.
Collected results, as shown in figure 8, showed a big
difference between the recorded times for the two
developer groups. Results show that by using
BookViews, developers can clearly answer the
experiment questions much faster.

Fig. 7. Snapshot from the Visualization tool shows BookViews with Open-book View for Part of ArgoUML Open
Source Project.

Canadian Journal of Pure and Applied Sciences 3438

Fig. 8. Average Time (in Seconds) needed to Answer
Each Question by the Two Developer Groups.

Additionally, for developers who used BookViews we
asked them to evaluate the generated views. We asked
them if BookViews helps in understanding the contents of
software projects (“very useful”, “useful”, “not useful”).
Eight out of ten developers found the views “very useful”.
The views were found just “useful” by two developers.

The results of the experiment showed that BookViews
visualization save time and efforts of developers who
want to understand or browse the internal contents of a
project. It is also shown that developers considered
BookViews useful in helping them to understand a
project’s contents.

CONCLUSION

A visualization methodology has been proposed to
provide a visual summary for the contents of software
projects. The visualization helps developers to quickly
understand the contents of software projects in terms of
packages, classes and methods. A visualization tool,
called BookViews, has been developed to automatically
generate the models that are used for visualization. The
generated views provide useful summaries for software
projects and are used to visually compare between
projects based on their sizes. BookViews visualization
has been evaluated by a preliminary experimental study.
The results of the study showed the effectiveness and the
usefulness of the views for software browsers.

The work can be extended in many ways and these
extensions are under consideration. One direct extension
is to include further information about methods in book
pages. Information about methods names, parameters and
comments can be included in pages. Another extension is
to include more information in the book. Testing files,
documentations and configuration files are examples for

such information. We also aim to include names of
programmers who participated in the development
process.

REFERENCES

Alam, S. and Dugerdil, P. 2007. Evospaces visualization
tool: Exploring software architecture in 3D. Proc. IEEE
14th Working Conference on Reverse Engineering
(WCRE'07). 269-270.

Anslow, C., Marshall, S., Noble, J. and Biddle, R. 2013.
SourceVis: Collaborative software visualization for co-
located environments, Proc. First IEEE Working
Conference on Software Visualization (VISSOFT'13). 1-
10.

Beck, F. and Diehl, S. 2010. Visual comparison of
software architectures, Proc. 5th International Symposium
on Software visualization (SOFTVIS '10). 183-192.

Caserta P. and Zendra, O. 2011. Visualization of the
Static Aspects of Software: A Survey Transactions on
Visualization and Computer Graphics. 2011. IEEE.
17(7):913-933.

Hammad, M., Abufakher, S. and Hammad, M. 2014. A
Visualization Approach for Bug Reports in Software
Systems. International Journal of Software Engineering
and Its Applications. 8(10):37-45

Hammad, M. and Rawashdeh, A. 2014. A Framework to
Measure and Visualize Class Coupling. International
Journal of Software Engineering & Its Applications.
8(4):137-146.

Holy, L., Snajberk, J., Brada, P. and Jezek, K. 2013. A
Visualization Tool for Reverse-Engineering of Complex
Component Applications, Proc. IEEE International
Conference on Software Maintenance (ICSM'13). 500-
503.

Kobayashi, K., Kamimura, M., Yano, K., Kato, K. and
Matsuo, A. 2013. SArF Map: Visualizing Software
Architecture from Feature and Layer Viewpoints, Proc.
IEEE 21st International Conference on Program
Comprehension (ICPC 2013). 43-52.

Lanza, M. and Ducasse, S. 2001. A Categorization of
Classes based on the Visualization of their Internal
Structure: the Class Blueprint, Proc. 16th International
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA'01). 300-311.

Ma, KL. 2008. StarGate: A Unified, Interactive
Visualization of Software Projects, Proc. IEEE Pacific
Visualization Symposium (PacificVIS'08). 191 - 198.

Maletic, J., Leigh, J., Marcus A. and Dunlap, G. 2001.
Visualizing object-oriented software in virtual reality,

Hammad 3439

Proc. IEEE 9th International Workshop on Program
Comprehension (IWPC'01). 26-35.

Maletic, J., Marcus, A. and Collard, M. 2002. ATask
Oriented View of Software Visualization. In Proceedings
of the 1st International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT '02). IEEE
Computer Society, Washington, DC, USA. pp32.

Novais, R., Torres, A., Mendes, T., Mendonça, M. and
Zazworka, N. 2013. Software evolution visualization: A
systematic mapping study, Information and Software
Technology. 55(11):1860-1883.

Ogawa, M. and Ma, KL. 2009. code_swarm: A design
study in organic software visualization. IEEE
Transactions on Visualization and Computer Graphics.
15(6):1097-1104.

Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly,
T., Kwiatkowska, M., Mcdermid, J. and Paige. R. 2012.
Large-scale complex IT systems. Communications of the
ACM. 55(7):71-77.

Wettel, R. and Lanza, M. 2008. Visual exploration of
large-scale system evolution, Proc. IEEE 15th Working
Conference on Reverse Engineering (WCRE'08). 219-
228.

Zhi, J. and Ruhe, UDE. 2013. A tool for visualizing
software document evolution. Proc. 2013 First IEEE
Working Conference on Software Visualization
(VISSOFT '13). 1-4.

Received: Jan 12, 2015; Revised: Feb 21, 2015;

Accepted: March 12, 2015

