
SENRA Academic Publishers, British Columbia
Vol. 7, No. 3, pp. 2639-2647, October 2013
Online ISSN: 1920-3853; Print ISSN: 1715-9997

Short Communication

AN-VE: AN IMPROVED HAMMING CODING TECHNIQUE

*Egwali Annie O and Akwukwuma V V N

Department of Computer Science, Faculty of Physical Sciences
University of Benin, PMB. 1154, Benin City, Nigeria

ABSTRACT

Many communication channels are subject to noise, and thus errors may be introduced during transmission. Error codes
can be units of deliberate error injection or faults, which alters and cause hazards during communication, this makes
error detection and correction important in the computing environment. Coding techniques restricted to detecting errors
only are either limited to analyzing only the length of the encoded message bits or repeats every transmitted stream of
bit(s) several times in order to check for correctness, which is not effective if similar error occurs within the same
position on all clusters of bits in the encoded message. Error detecting and correcting techniques are more thorough by
introducing extra redundant codes to detect the actual position of errors and correcting them, however if more than one
error occurs, it becomes difficult to detect all errors and decode correctly. We therefore propose a hybrid error detecting
and correcting technique, AN-VE, that simultaneously detect the existence of faulted codes right from the transmitter
domain, analyzes all error positions in the encoded message via the use of extra parity bits, decode all errors correctly
and verify error messages with the original message. We evaluate our approach using simulated and real data.

Keywords: Error, code, parity, hamming, parity.

INTRODUCTION

As present society relies on the fault-free operation of
computing systems, system fault-tolerance has become a
serious issue that needs addressing. Common agreement
exists that large cluster of system codes always contain
faults and thus precautions must be taken to avoid system
failure. Failure of generated and transmitted codes often
can be caused by external or internal factors that can or
cannot be avoided, predicted, or corrected. Therefore,
techniques are needed that guarantee correct data
representation and transmission in the presence of errors
(Kahn, 1996). To enable reliable delivery of digital data
over reliable or unreliable communication channels,
digital code redundancy techniques have been classified
into two basic types: error detecting code technique and
error detecting and correcting code technique. Error
detecting technique is most commonly realized using a
suitable hash function that adds a fixed-length tag to a
message, and facilitates receivers to verify the delivered
message by re-computing the tag and comparing it with
the one provided. The enormous variety of dissimilar
hash function designs is because of their simplicity or
their suitability for detecting errors of different kinds.
Error detecting and correcting code technique have the
ability to detect, locate and correct errors. Consequently
any error correcting code can be used for error detection.

Coding techniques restricted to detecting errors only are
either limited to analyzing just the length of the encoded
message bits without specifying the actual bits with errors,
or every transmitted stream of bit(s) is repeated several
times in order to check for correctness, which does not
prove effective if similar error occurs within the same
position on all clusters of bits in the encoded message. In
order for a system to deliver its expected service in the
presence of errors caused by faults or units of deliberate
error injection, some extra redundant codes are needed.
Redundancy involves the inclusion of some extra codes in
order to check the correctness or the consistencies of the
results produce, and if the need arises, concurrent
computations are chosen. Also the effects of faults can be
masked with no specific indication of their occurrence,
thus error effects are hidden from the rest of the system.
In addition, faulty codes can be removed or replace in
response to system failure, a process usually triggered
either by internal error detection mechanisms in the faulty
coded unit(s) of the software or by detection of errors in
the output(s) of these units. These redundant codes are
evident in some error detecting and correcting techniques,
which makes them more thorough, because it helps to
detect the actual position of the errors and correct the
errors. Nevertheless, if more than one error occurs in an
encoded stream message bit, error detecting and
correcting techniques have difficulties in detecting all
errors and decoding them correctly. Codes fault tolerance
is very necessary, but can itself be dangerously error-
prone because of the additional effort that must be *Corresponding author email: egwali.annie@yahoo.com

Egwali and Akwukwuma 2640

involved in the programming process. The additional
redundancy may increase size and complexity and thus
adversely affect information, software and by extension
hardware reliability.

Fletcher (1982) developed a Checksum algorithm that
involves detecting errors commonly introduced by
humans in writing down or remembering identification
numbers (Stallings, 2003). The checksum of a message is
a modular arithmetic sum of a stream of message bits
(SMB) of a fixed length, which could be negated by
means of a one's-complement prior to transmission to
detect errors resulting in all-zero messages (Fletcher,
1982). In repetition code technique, involves error
detection, every transmitted stream of bit(s) is repeated
several times in order to check for correctness (Filiol,
2003; Courtois, 2002). Unfortunately, repetition codes
prove not to be effective if similar error occurs within the
same position on all clusters of bits in the stream. Berger
(1961) developed the Berger code which can detect all
unidirectional errors, that is errors that only flip ones into
zeroes or only zeroes into ones, such as in asymmetric
channels. The check bits of Berger codes are computed by
summing all the zeroes in the stream of message bits, and
expressing that sum in natural binary. Berger codes can
detect any number of one-to-zero bit-flip errors, as long as
no zero-to-one errors occurred in the same stream of
message bits. Berger codes can detect any number of
zero-to-one bit-flip errors, as long as no one-to-zero bit-
flip errors occur in the same SMB but cannot correct any
error (Wiki, 2009).

Hamming (1969) posited the hamming error and
correcting coding technique which are the earliest linear
error correcting code technique. It involves the use of an
extra parity bit to ensure the identification of a single
error. However, if more than one error occurs, the
Hamming Decoder block decodes incorrectly. Peterson
(1960) proposed parity coding technique, which can only
detect single errors and any odd number of errors. In this
technique extra bits are added to the source bits so that the
derived bits with value 1 in the set of bits are either even
or odd (Peterson and Brown, 1961). When using even
parity, the parity bit is set to 1 if the number of ones in a
given set of bits (not including the parity bit) is odd,
making the entire set of bits (including the parity bit) even.
When using odd parity, the parity bit is set to 1 if the
number of ones in a given set of bits (not including the
parity bit) is even, keeping the entire set of bits (including
the parity bit) odd. In other words, an even parity bit will
be set to "1" if the number of 1's + 1 is even, and an odd
parity bit will be set to "1" if the number of 1's +1 is odd
(Wiki, 2010). This coding technique is applicable in data
storage and retrieval from or into the computer memory.
A shortfall with this technique is that for an odd flipped
bit codes, an erroneous code with an odd flipped bit will
be assumed to be correct. Also parity coding technique

can only detect single errors and any odd number of errors.
According to Wiki (2010a), parity does not indicate
which bit contained the error, even when it can detect it.
The data must be discarded entirely and re-transmitted
from scratch. On a noisy transmission medium, a
successful transmission could take a long time or may
never occur.

Borden codes denoted as Bi/j are a set of codes of length j
for which exactly i bits are ones. The union of codes with
i being the set of values congruent to

 is the Borden (j, k) code. For
example, to derive the Borden (7, 3) code, by substituting
values for j and k, we will have:

. Hence i belong to the set {0,
3, 6}. This means that source codes of length 7 (e.g.
0000000, 0011100, 0101010, 0111111, 1111011), which
have no bits, three bits or six bits of digit 1 belongs to the
Borden code set. A shortfall with this technique is that
although the Borden (j, k) can detect k unidirectional
errors (e.g. an erroneous conversion of 0 to 1 or 1 to 0), it
cannot detect both erroneous conversion at the same time.

MATERIALS AND METHODS

A hybrid model called AN-VE that incorporates the
unique features inherent in the cyclic redundancy
checking (CRC) technique and the Hamming error
detecting and correcting (HEDC) technique was
proposed. AN-VE offers a more robust error detecting
and correcting mechanism right from the transmitter
domain, unlike repetition coding technique, which is not
effective at detecting errors if similar error occurs within
the same position on all clusters of bits in the encoded
message bit stream. AN-VE is also more efficient than
the CRC technique at detecting errors, which only
analyzes the length of the encoded message bits against
the initial message bits because it both verify the length of
the encoded message and addresses all error positions via
the use of extra parity bits. AN-VE also performs better
that the HEDC technique, which is not able to detect all
errors accurately if more than one error occurs in a
decoded stream of message bits. AN-VE decodes and
corrects all errors correctly and verifies decoded error
messages with the original message. We evaluate our
approach using simulated and real data.

AN-VE Error Detecting and Correcting Method
AN-VE (f, g) code like the hamming code consists of “g”
data bits and the encoded data bits of length f. g is
defined by the equation: g = 2a – a − 1, and f is defined
by the equation, f = 2a − 1, were “a” denotes the parity
bits such that a 3. AN-VE is a technique that offers a
more robust error detecting and correcting mechanism.
Correcting and detecting error codes involves the
following three phases.

Canadian Journal of Pure and Applied Sciences 2641

Phase One: Creation of Message Bits
This phase executes the four steps process of the
Hamming coding technique to create a stream of message
bits. For example, for the following stream of message
bits: 11010011101100
� Step 1 and Step 2 yields: _ _1_101-

_0011101_100
� Step 3 and Step 4: Using * to denote the parity bit

position, the following results are derived for each
position:

� Position 1 yields: * _1_101_0011101_100
This is an even parity hence position 1 is set to 0:
0_1_101_0011101_100

• Position 2 yields: 0*1_101_0011101_100
This is an even parity hence position 2 is set to 0:
001_101_0011101_100

� Position 4 yields: 001*101_0011101_100
This is an odd parity hence position 4 is set to 1:
0011101_0011101_100

� Position 8 yields: 0011101*0011101_100
This is an even parity hence position 8 is set to 0:
001110100011101_100

� Position 16 yields: 001110100011101*100
This is an odd parity hence position 16 is set to 1:
0011101000111011100

Consequently, the expected created SMB is 0011101-
000111011100.

Phase Two: Error Verification
After the initial phase, if the created SMB is suppose to be
0011101000111011100, but due to noise the message bits
received is 0011111000101011110, the system is able to
detect this error because the second phase of AN-VE
checks each inputted bit in the received SMB for
accidental changes. During this stage, the system first
check the length of the input code bits received for
changes (see Tables 1 and 2) by lining input bits in a row,
and a (n+1)-bit pattern that acts as a Cyclic redundancy

Table 1. AN-VE Error Detecting Method (created and received SMB are equivalent).

Created SMB: 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
Divisor 1 0 1 1
Result 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Egwali and Akwukwuma 2642

check divisor is positioned underneath the left-hand end
of the row. If the input bit above the leftmost divisor bit is
0, the bit is left and the divisor is moved to the right by
one bit. If the input bit above the leftmost divisor bit is 1,
the divisor is XORed into the input. The divisor is then
shifted one bit to the right, and the process is repeated
until the divisor reaches the right-hand end of the input
row. Since the leftmost divisor bit zeroed every input bit
it touched, when this process ends the only bits in the
input row that can be nonzero are the n bits at the right-
hand end of the row, which will always be less than the
divisor.

Phase Three: Error Correction
After checking for changes, if the created SMB does not
match the received SMB (i.e. the system reads
“0000000000000001000” gotten from the received SMB
“0011111000101011110” instead of
“0000000000000000111” from the created SMB
“0011101000111011100”), AN-VE established that the
received code block contains data error and take
corrective measures to detect the actual bit locations
containing the errors. The affected check bits positions
are established, which are positions 2 check bit and 4
check bit for error bit at position 6 of received SMB;

Table 2. AN-VE Error Detecting Method (Created and Received SMB are not equivalent).

Created SMB: 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0
Received SMB: 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0
Divisor 1 0 1 1
Received SMB: 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0
Divisor 1 0 1 1
Received SMB: 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0
Divisor 1 0 1 1
Received SMB: 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 1 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
Divisor 1 0 1 1
Received SMB: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
Divisor 1 0 1 1
Result 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Canadian Journal of Pure and Applied Sciences 2643

positions 4 check bit and 8 check bit for error bit at
position 12 of received SMB; positions 2 check bit and 16
check bit for error bit at position 16 of received SMB. To
effectively correct all errors, unlike the conventional
hamming technique that can only handle one error
correction in a SMB, AN-VE devices a parsing procedure
that parses each n-bit binary position on the received
SMB which are lined in a row and compares it with the n-
bit binary position of the created SMB which are lined in
a row starting from the extreme left. The parity check bits
of the first bit at variance between the two sets of n-bit
binary position in a row are verified to detect the error,
which is then, corrected using the hamming error
correcting and at each parsing stage, the system only

acknowledges the positions of the other bits in the row
and not their values. The system repeats this process till
all n-bit binary positions is parsed and both created and
received codes are equivalent (see Table 3).

EXPERIMENT

To demonstrate the efficiency of AN-VE over HEDC in
detecting and correcting errors during communication, we
analytically simulate the performance of the techniques in
the presence of error in form of noise in a channel of
communication using simulink that runs in Matlab.
Generally in every communication system the basic
components of communication are the original data bits,

Table 3. AN-VE Corrective Mechanism.

Created SMB: 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0
Received SMB: 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0
AN-VE Parsing: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * 0
HEDC Correction: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0 0
Created SMB: 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0
Received SMB: 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0
AN-VE Parsing: _ _ _ _ _ _ _ _ _ _ _ * 1 0 1 1 1 0 0
HEDC Correction: _ _ _ _ _ _ _ _ _ _ _ 1 1 0 1 1 1 0 0
Created SMB: 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0
Received SMB: 0 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0
AN-VE Parsing: _ _ _ _ _ * 1 0 0 0 1 1 1 0 1 1 1 0 0
HEDC Correction: _ _ _ _ _ 0 1 0 0 0 1 1 1 0 1 1 1 0 0
Created SMB: 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0
Received SMB: 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0

Fig. 1. Hamming Encoder.

Fig. 2. Simulink of the HEDC Communication Components.

Egwali and Akwukwuma 2644

which consists of vectors of size g, the communication
source symbolized as x, the channel of communication
represented as y, the output sink denoted as sk and the
decoded data bits indicated as b. To execute an operation,
the original data bits are inputted via the communication
source through the channel, and finally the decoded data
bits is displayed at the output sink.

HEDC:
The Bernoulli Binary Generator which generates a
random binary sequence is the source x for the signal in
this model. Next the Hamming encoder encodes the
original data bits g before it is sent through the channel
(see Fig. 1). The Binary Symmetric Channel (BSC)
simulates a channel with noise. The channel generates a
random binary signal, and then switches the symbols 0

Fig. 3. Simulink of the AN-VE Communication Components.

Fig. 4. Readings of Error Data in HEDC after Computation.

Fig. 5. Uncorrected and Corrected Errors of HEDC.

Canadian Journal of Pure and Applied Sciences 2645

and 1 or the reverse in the signal, according to a specified
error probability, to simulate a channel with noise.

The Hamming decoder decodes the data after it is sent
through the channel. It verifies if an error is created in the
original data bits by the noise in the channel, identifies the
error and decodes the data received to the original data
bits correctly. The bits error rate represented as err is
computed at z, which in this case detects and computes
the error rate of the channel using the values of its two
input ports, the transmitted signal Tx and the received
signal Rx. The computation is based on the following

equation (1), which denotes the probability of two or
more errors occurring in encoded data bits of length f.
err = 1 – (0.99)f – f(0.99)f-1(0.01) (1)

The bits error rate result is displayed in the first box of sk
after the termination of execution. The second box of sk
displays the number of errors occurrences. The third box
of sk displays the total number of bits (bn) transmitted.
The logical inference and relationship between the
components are represented in figure 2, which contains a
sample of the readings of HEDC [(1023, 1013)].

Fig. 6. Readings of Error Data (AN-VE) After Computation.

Table 4. Computational Readings.

Bits error rate
(err) Number of errors Transmitted bits

Encoded data
bits length

(f)

Data bits
(g)

Parity bits
(s) HEDC AN-VE HEDC AN-VE

9.474e+004 7 4 3 0.001066 0.0057 101 54
5.007e+004 15 11 4 0.001997 0.0002397 100 12
2.415e+004 31 26 5 0.00414 0.000207 100 5
1.664e+004 63 57 6 0.006068 0.000201 101 4
1.02e+004 127 120 7 0.0101 0.00103 103 2
8151 255 247 8 0.01227 0.00114 100 9
9036 511 502 9 0.01162 0.001771 105 16
1.013e+004 1023 1013 10 0.01076 0.001382 109 14
1.018e+004 2047 2036 11 0.01041 0.001081 106 11

0
20
40
60
80
100
120

N
um

be
r o

f E
rr
or

Transmitted bits

HEDC

AN‐VE

Fig. 7. Available Errors in Transmitted Bits after Applying HEDC and AN-VE Techniques.

Egwali and Akwukwuma 2646

AN-VE:
For AN-VE, the source x is the Bernoulli Binary
Generator. Next the Hamming encoder encodes the
original stream of message bits g before it is sent through
the Binary Symmetric Channel (BSC) that adds binary
errors to the input signal (see Fig. 3). The cyclic encoder
creates the systematic cyclic bits with message length K
and encoded SMB length N in the binary cyclic encoder.
The code rate is:

Code rate = ge/fe = message bits length/ encoded SMB
length

where ge is the message length and fe is the length of the
derived encoded data bits and “a” denotes the check bits
such that ge = 2a − a − 1, fe = 2a − 1, a 3. Then the input
SMB is modulated using the binary phase shift keying
(BPSK) method, which is a technique for modulating a
binary signal onto a complex waveform by shifting the
phase of the complex signal. In digital baseband BPSK,
the symbols 0 and 1 are modulated to the complex
numbers exp(t) and -exp(t), respectively, where t is a
fixed angle. Thus for t = 0, these numbers are just 1 and -
1. The AWGN channel add white Gaussian noise to the
input codes and it is more robust than the binary
symmetric channel in some specific applications because
it accepts both real or complex codes and it supports
multichannel input and output codes inputs as well as
frame-based processing. The Hamming decoder parses
through the n-bit binary position on the received SMB
bits and decodes the data after it is sent through the
channel. It verifies if an error is created in the original
data bits by the noise in the channel, identifies the error
and decodes the data received to the original data bits
correctly. The system repeats this process till all n-bit
binary positions is parsed and both transmitted and
received codes are equivalent. After each AN-VE Parsing,
the bits error rate (err) of the created SMB and received
SMB is computed at z, which detects and computes the
error rate of the channel using the values of the
transmitted signal Tx and the received signal Rx ports.
The block compares the two signals and checks for errors.
The output depicted as sk is a vector with three entries: bit
error rate, number of errors and total number of bits
transmitted.

RESULTS AND DISCUSSION

The readings of the upper section of figure 4 reveal the
channel of uncorrected errors in an encoded SMB
generated by the channel coding of HEDC, which are
pulses represented as 1s. The readings of the lower
section of figure 4 shows the same encoded SMB but with
fewer errors at the end of each 5000 time steps.

A proximity assessment of upper section of figure 4
shows that in the single encoded SMB, two 1s represented
as the wider rectangular pulse, are errors not corrected,

whereas the narrower rectangular pulse to the right of the
upper section represents a single error, which is corrected
(see Fig. 5). The two 1s, which are uncorrected, accounts
for the uncorrected errors in the lower section.

Figure 6 shows the performance of AN-VE with the upper
and lower sections of the figure revealing the channel of
uncorrected and corrected errors respectively. It is
evident that with the same number of bits transmitted (see
Table 4), AN-VE performed better, for the two 1s which
are uncorrected, are far less than is the case with HEDC,
this is also shown in figure 7, which reveals the number
errors left over in the transmitted bits after the application
of both techniques.

CONCLUSION

Fault tolerance solutions can be implemented using
various methodologies. Each method has its own tradeoffs
in terms of strength in detecting errors, potency in
correcting errors, portability, and ease of use. We
proposed a detecting and correcting technique that is more
robust than HEDC because although HEDC is quite
useful in cases where only a single error is of significant
probability, the technique can only be used to detect up to
two simultaneous bit errors and correct single errors, both
cannot be done simultaneously. Also because the
technique can only correct one error in each transmitted
stream of message bits, if more than one error occurs, the
Hamming decoder does carry the hazard of miscorrecting
double errors. Conversely, AN-VE enables the detection
of any number of simultaneous bit errors and corrects all
errors and both can be done simultaneously. Furthermore
unlike the HEDC which deals with error detection after
data transmission, AN-VE addresses error detection right
from the transmitter domain. AN-VE can detect the
erroneous bit in a transmitted code because every
transmitted code is repeated several times in order to
verify its accuracy.

REFERENCES

Berger, JM. 1961. A note on an error detection code for
asymmetric channels. Information and Control. 4: 68-73.

Courtois, NT. 2002. Cryptanalysis of block ciphers with
overdefined systems of equations. Advances in
Cryptology – AsiaCrypt 2002, Lecture Notes in Computer
Science 2501, Springer-Verlag. 267-287, doi:10.1007/3-
540-36178-2_17.

Filiol, E. 2003. Plaintext-dependent Repetition Codes
Cryptanalysis of Block Ciphers - the AES Case,
Published on eprint on 8th of January 2003. Available at:
http://eprint.iacr.org/2003/003

Fletcher, JG. 1982. An Arithmetic Checksum for Serial
Transmissions. IEEE Trans. on Comm. 30(1): 247-252.

Canadian Journal of Pure and Applied Sciences 2647

Hamming, RW. 1980. The Unreasonable Effectiveness of
Mathematics. The American Mathematical Monthly.
87:81-90.

Hamming, RW. 1969. One Man's View of Computer
Science. Journal of the ACM. 16 (1):3-12.

Kahn, D. 1996. The Codebreakers: The Story of Secret
Writing, New York: Macmillan Publishing Co., 1967.
Available at:
http://www.cse.iitk.ac.in/users/anuag/crypto.pdf.

Nicolas, T. 2003. Did Filiol Break AES?, Published on e-
print on 4th of February 2003. Available at:
http://eprint.iacr.org/2003/022.

Peterson, WW. 1960. Encoding and Error-Correction
Procedures for the Bose-Chaudhuri Codes. IRE
Transactions on Information Theory. IT-6:459-470.

Peterson, WW. and Brown, DT. 1961. Cyclic Codes for
Error Detection. Proceedings of the IRE. 49:228.
doi:10.1109/JRPROC.1961.287814.

Stallings, W. 2003. The TCP/IP Checksum. Available at:
http://tchandouts.com/07315/Checksum.pdf

Wiki 2010. Parity Bit. Available at:
http://en.wikipedia.org/wiki/Parity_bit.

Wiki 2010a. Hamming Code. Available at:
http://en.wikipedia.org/wiki/Hamming_code.

Received: March 20, 2013; Accepted: Aug 12, 2013

