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ABSTRACT 

 
Many communication channels are subject to noise, and thus errors may be introduced during transmission. Error codes 
can be units of deliberate error injection or faults, which alters and cause hazards during communication, this makes 
error detection and correction important in the computing environment. Coding techniques restricted to detecting errors 
only are either limited to analyzing only the length of the encoded message bits or repeats every transmitted stream of 
bit(s) several times in order to check for correctness, which is not effective if similar error occurs within the same 
position on all clusters of bits in the encoded message. Error detecting and correcting techniques are more thorough by 
introducing extra redundant codes to detect the actual position of errors and correcting them, however if more than one 
error occurs, it becomes difficult to detect all errors and decode correctly. We therefore propose a hybrid error detecting 
and correcting technique, AN-VE, that simultaneously detect the existence of faulted codes right from the transmitter 
domain, analyzes all error positions in the encoded message via the use of extra parity bits, decode all errors correctly 
and verify error messages with the original message. We evaluate our approach using simulated and real data. 
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INTRODUCTION  
 
As present society relies on the fault-free operation of 
computing systems, system fault-tolerance has become a 
serious issue that needs addressing. Common agreement 
exists that large cluster of system codes always contain 
faults and thus precautions must be taken to avoid system 
failure. Failure of generated and transmitted codes often 
can be caused by external or internal factors that can or 
cannot be avoided, predicted, or corrected. Therefore, 
techniques are needed that guarantee correct data 
representation and transmission in the presence of errors 
(Kahn, 1996).  To enable reliable delivery of digital data 
over reliable or unreliable communication channels, 
digital code redundancy techniques have been classified 
into two basic types: error detecting code technique and 
error detecting and correcting code technique. Error 
detecting technique is most commonly realized using a 
suitable hash function that adds a fixed-length tag to a 
message, and facilitates receivers to verify the delivered 
message by re-computing the tag and comparing it with 
the one provided.  The enormous variety of dissimilar 
hash function designs is because of their simplicity or 
their suitability for detecting errors of different kinds. 
Error detecting and correcting code technique have the 
ability to detect, locate and correct errors.  Consequently 
any error correcting code can be used for error detection.   
 

Coding techniques restricted to detecting errors only are 
either limited to analyzing just the length of the encoded 
message bits without specifying the actual bits with errors, 
or every transmitted stream of bit(s) is repeated several 
times in order to check for correctness, which does not 
prove effective if similar error occurs within the same 
position on all clusters of bits in the encoded message. In 
order for a system to deliver its expected service in the 
presence of errors caused by faults or units of deliberate 
error injection, some extra redundant codes are needed. 
Redundancy involves the inclusion of some extra codes in 
order to check the correctness or the consistencies of the 
results produce, and if the need arises, concurrent 
computations are chosen.  Also the effects of faults can be 
masked with no specific indication of their occurrence, 
thus error effects are hidden from the rest of the system.  
In addition, faulty codes can be removed or replace in 
response to system failure, a process usually triggered 
either by internal error detection mechanisms in the faulty 
coded unit(s) of the software or by detection of errors in 
the output(s) of these units. These redundant codes are 
evident in some error detecting and correcting techniques, 
which makes them more thorough, because it helps to 
detect the actual position of the errors and correct the 
errors. Nevertheless, if more than one error occurs in an 
encoded stream message bit, error detecting and 
correcting techniques have difficulties in detecting all 
errors and decoding them correctly.  Codes fault tolerance 
is very necessary, but can itself be dangerously error-
prone because of the additional effort that must be *Corresponding author email: egwali.annie@yahoo.com 
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involved in the programming process. The additional 
redundancy may increase size and complexity and thus 
adversely affect information, software and by extension 
hardware reliability. 
 
Fletcher (1982) developed a Checksum algorithm that 
involves detecting errors commonly introduced by 
humans in writing down or remembering identification 
numbers (Stallings, 2003).  The checksum of a message is 
a modular arithmetic sum of a stream of message bits 
(SMB) of a fixed length, which could be negated by 
means of a one's-complement prior to transmission to 
detect errors resulting in all-zero messages (Fletcher, 
1982). In repetition code technique, involves error 
detection, every transmitted stream of bit(s) is repeated 
several times in order to check for correctness (Filiol, 
2003; Courtois, 2002). Unfortunately, repetition codes 
prove not to be effective if similar error occurs within the 
same position on all clusters of bits in the stream.  Berger 
(1961) developed the Berger code which can detect all 
unidirectional errors, that is errors that only flip ones into 
zeroes or only zeroes into ones, such as in asymmetric 
channels. The check bits of Berger codes are computed by 
summing all the zeroes in the stream of message bits, and 
expressing that sum in natural binary. Berger codes can 
detect any number of one-to-zero bit-flip errors, as long as 
no zero-to-one errors occurred in the same stream of 
message bits. Berger codes can detect any number of 
zero-to-one bit-flip errors, as long as no one-to-zero bit-
flip errors occur in the same SMB but cannot correct any 
error (Wiki, 2009). 
 
Hamming (1969) posited the hamming error and 
correcting coding technique which are the earliest linear 
error correcting code technique. It involves the use of an 
extra parity bit to ensure the identification of a single 
error. However, if more than one error occurs, the 
Hamming Decoder block decodes incorrectly. Peterson 
(1960) proposed parity coding technique, which can only 
detect single errors and any odd number of errors.  In this 
technique extra bits are added to the source bits so that the 
derived bits with value 1 in the set of bits are either even 
or odd (Peterson and Brown, 1961). When using even 
parity, the parity bit is set to 1 if the number of ones in a 
given set of bits (not including the parity bit) is odd, 
making the entire set of bits (including the parity bit) even. 
When using odd parity, the parity bit is set to 1 if the 
number of ones in a given set of bits (not including the 
parity bit) is even, keeping the entire set of bits (including 
the parity bit) odd. In other words, an even parity bit will 
be set to "1" if the number of 1's + 1 is even, and an odd 
parity bit will be set to "1" if the number of 1's +1 is odd 
(Wiki, 2010).  This coding technique is applicable in data 
storage and retrieval from or into the computer memory.  
A shortfall with this technique is that for an odd flipped 
bit codes, an erroneous code with an odd flipped bit will 
be assumed to be correct. Also parity coding technique 

can only detect single errors and any odd number of errors. 
According to Wiki (2010a), parity does not indicate 
which bit contained the error, even when it can detect it. 
The data must be discarded entirely and re-transmitted 
from scratch. On a noisy transmission medium, a 
successful transmission could take a long time or may 
never occur.  
 
Borden codes denoted as Bi/j are a set of codes of length j 
for which exactly i bits are ones.  The union of codes with 
i being the set of values congruent to 

 is the Borden (j, k) code.  For 
example, to derive the Borden (7, 3) code, by substituting 
values for j and k, we will have: 

.  Hence i belong to the set {0, 
3, 6}. This means that source codes of length 7 (e.g. 
0000000, 0011100, 0101010, 0111111, 1111011), which 
have no bits, three bits or six bits of digit 1 belongs to the 
Borden code set. A shortfall with this technique is that 
although the Borden (j, k) can detect k unidirectional 
errors (e.g. an erroneous conversion of 0 to 1 or 1 to 0), it 
cannot detect both erroneous conversion at the same time.  
 
MATERIALS AND METHODS 
 
A hybrid model called AN-VE that incorporates the 
unique features inherent in the cyclic redundancy 
checking (CRC) technique and the Hamming error 
detecting and correcting (HEDC) technique was 
proposed. AN-VE offers a more robust error detecting 
and correcting mechanism right from the transmitter 
domain, unlike repetition coding technique, which is not 
effective at detecting errors if similar error occurs within 
the same position on all clusters of bits in the encoded 
message bit stream.  AN-VE is also more efficient than 
the CRC technique at detecting errors, which only 
analyzes the length of the encoded message bits against 
the initial message bits because it both verify the length of 
the encoded message and addresses all error positions via 
the use of extra parity bits. AN-VE also performs better 
that the HEDC technique, which is not able to detect all 
errors accurately if more than one error occurs in a 
decoded stream of message bits. AN-VE decodes and 
corrects all errors correctly and verifies decoded error 
messages with the original message. We evaluate our 
approach using simulated and real data.   
 
AN-VE Error Detecting and Correcting Method 
AN-VE (f, g) code like the hamming code consists of “g” 
data bits and the encoded data bits of length f.  g is 
defined by the equation: g = 2a – a − 1, and  f is defined 
by the equation, f = 2a − 1, were “a” denotes the parity 
bits such that a  3.  AN-VE is a technique that offers a 
more robust error detecting and correcting mechanism.  
Correcting and detecting error codes involves the 
following three phases.  
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Phase One: Creation of Message Bits  
This phase executes the four steps process of the 
Hamming coding technique to create a stream of message 
bits.  For example, for the following stream of message 
bits: 11010011101100 
� Step 1 and Step 2 yields:  _ _1_101-

_0011101_100 
� Step 3 and Step 4: Using * to denote the parity bit 

position, the following results are derived for each 
position:  

� Position 1 yields:  * _1_101_0011101_100 
This is an even parity hence position 1 is set to 0: 
0_1_101_0011101_100 

• Position 2 yields: 0*1_101_0011101_100 
This is an even parity hence position 2 is set to 0: 
001_101_0011101_100 

� Position 4 yields: 001*101_0011101_100 
This is an odd parity hence position 4 is set to 1: 
0011101_0011101_100 

� Position 8 yields: 0011101*0011101_100 
This is an even parity hence position 8 is set to 0: 
001110100011101_100 

� Position 16 yields: 001110100011101*100 
This is an odd parity hence position 16 is set to 1: 
0011101000111011100 

Consequently, the expected created SMB is 0011101-
000111011100.   
  
Phase Two: Error Verification 
After the initial phase, if the created SMB is suppose to be 
0011101000111011100, but due to noise the message bits 
received is 0011111000101011110, the system is able to 
detect this error because the second phase of AN-VE 
checks each inputted bit in the received SMB for 
accidental changes. During this stage, the system first 
check the length of the input code bits received for 
changes (see Tables 1 and 2) by lining input bits in a row, 
and a (n+1)-bit pattern that acts as a Cyclic redundancy 

 

Table 1. AN-VE Error Detecting Method (created and received SMB are equivalent). 
 

Created SMB:  0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 
Divisor  1 0 1 1                
Received SMB:  0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 
Divisor   1 0 1 1               
Received SMB:  0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 
Divisor    1 0 1 1              
Received SMB:  0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 0 
Divisor     1 0 1 1             
Received SMB:  0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 
Divisor      1 0 1 1            
Received SMB:  0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 
Divisor       1 0 1 1           
Received SMB:  0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 
Divisor        1 0 1 1          
Received SMB:  0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 
Divisor         1 0 1 1         
Received SMB:  0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 
Divisor          1 0 1 1        
Received SMB:  0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 
Divisor           1 0 1 1       
Received SMB:  0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 
Divisor            1 0 1 1      
Received SMB:  0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 
Divisor             1 0 1 1     
Received SMB:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
Divisor              1 0 1 1    
Received SMB:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
Divisor               1 0 1 1   
Received SMB:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
Divisor                1 0 1 1  
Received SMB:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
Divisor                 1 0 1 1 
Result 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
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check divisor is positioned underneath the left-hand end 
of the row. If the input bit above the leftmost divisor bit is 
0, the bit is left and the divisor is moved to the right by 
one bit. If the input bit above the leftmost divisor bit is 1, 
the divisor is XORed into the input. The divisor is then 
shifted one bit to the right, and the process is repeated 
until the divisor reaches the right-hand end of the input 
row. Since the leftmost divisor bit zeroed every input bit 
it touched, when this process ends the only bits in the 
input row that can be nonzero are the n bits at the right-
hand end of the row, which will always be less than the 
divisor.   

Phase Three: Error Correction 
After checking for changes, if the created SMB does not 
match the received SMB (i.e. the system reads 
“0000000000000001000” gotten from the received SMB 
“0011111000101011110” instead of 
“0000000000000000111” from the created SMB 
“0011101000111011100”), AN-VE established that the 
received code block contains data error and take 
corrective measures to detect the actual bit locations 
containing the errors.  The affected check bits positions 
are established, which are positions 2 check bit and 4 
check bit for error bit at position 6 of received SMB; 

Table 2. AN-VE Error Detecting Method (Created and Received SMB are not equivalent). 
 

Created SMB:  0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 
Received SMB:  0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0 
Divisor  1 0 1 1                
Received SMB:  0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0 
Divisor   1 0 1 1               
Received SMB:  0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0 
Divisor    1 0 1 1              
Received SMB:  0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 
Divisor     1 0 1 1             
Received SMB:  0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 0 
Divisor      1 0 1 1            
Received SMB:  0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 0 
Divisor       1 0 1 1           
Received SMB:  0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 
Divisor        1 0 1 1          
Received SMB:  0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 
Divisor         1 0 1 1         
Received SMB:  0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 1 0 
Divisor          1 0 1 1        
Received SMB:  0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 
Divisor           1 0 1 1       
Received SMB:  0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 
Divisor            1 0 1 1      
Received SMB:  0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 
Divisor             1 0 1 1     
Received SMB:  0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 
Divisor              1 0 1 1    
Received SMB:  0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 
Divisor               1 0 1 1   
Received SMB:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Divisor                1 0 1 1  
Received SMB:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Divisor                 1 0 1 1 
Result 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
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positions 4 check bit and 8 check bit for error bit at 
position 12 of received SMB; positions 2 check bit and 16 
check bit for error bit at position 16 of received SMB. To 
effectively correct all errors, unlike the conventional 
hamming technique that can only handle one error 
correction in a SMB, AN-VE devices a parsing procedure 
that parses each n-bit binary position on the received 
SMB which are lined in a row and compares it with the n-
bit binary position of the created SMB which are lined in 
a row starting from the extreme left. The parity check bits 
of the first bit at variance between the two sets of n-bit 
binary position in a row are verified to detect the error, 
which is then, corrected using the hamming error 
correcting and at each parsing stage, the system only 

acknowledges the positions of the other bits in the row 
and not their values. The system repeats this process till 
all n-bit binary positions is parsed and both created and 
received codes are equivalent (see Table 3). 
 
EXPERIMENT 
 
To demonstrate the efficiency of AN-VE over HEDC in 
detecting and correcting errors during communication, we 
analytically simulate the performance of the techniques in 
the presence of error in form of noise in a channel of 
communication using simulink that runs in Matlab.  
Generally in every communication system the basic 
components of communication are the original data bits, 

Table 3. AN-VE Corrective Mechanism. 
 

Created SMB:  0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 
Received SMB:  0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0 
AN-VE Parsing:    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * 0 
HEDC Correction:  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0 0 
Created SMB:  0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 
Received SMB:  0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 
AN-VE Parsing:    _ _ _ _ _ _ _ _ _ _ _ * 1 0 1 1 1 0 0 
HEDC Correction:  _ _ _ _ _ _ _ _ _ _ _ 1 1 0 1 1 1 0 0 
Created SMB:  0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 
Received SMB:  0 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 
AN-VE Parsing:    _ _ _ _ _ * 1 0 0 0 1 1 1 0 1 1 1 0 0 
HEDC Correction:  _ _ _ _ _ 0 1 0 0 0 1 1 1 0 1 1 1 0 0 
Created SMB:  0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 
Received SMB:  0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 

  

 
  
Fig. 1. Hamming Encoder. 

 

Fig. 2. Simulink of the HEDC Communication Components. 
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which consists of vectors of size g, the communication 
source symbolized as x, the channel of communication 
represented as y, the output sink denoted as sk and the 
decoded data bits indicated as b.  To execute an operation, 
the original data bits are inputted via the communication 
source through the channel, and finally the decoded data 
bits is displayed at the output sink.  
 

HEDC: 
The Bernoulli Binary Generator which generates a 
random binary sequence is the source x for the signal in 
this model. Next the Hamming encoder encodes the 
original data bits g before it is sent through the channel 
(see Fig. 1). The Binary Symmetric Channel (BSC) 
simulates a channel with noise. The channel generates a 
random binary signal, and then switches the symbols 0 

 
Fig. 3. Simulink of the AN-VE Communication Components. 
 

 

Fig. 4. Readings of Error Data in HEDC after Computation. 
 

 

Fig. 5. Uncorrected and Corrected Errors of HEDC. 
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and 1 or the reverse in the signal, according to a specified 
error probability, to simulate a channel with noise.   

 
The Hamming decoder decodes the data after it is sent 
through the channel.  It verifies if an error is created in the 
original data bits by the noise in the channel, identifies the 
error and decodes the data received to the original data 
bits correctly. The bits error rate represented as err is 
computed at z, which in this case detects and computes 
the error rate of the channel using the values of its two 
input ports, the transmitted signal Tx and the received 
signal Rx. The computation is based on the following 

equation (1), which denotes the probability of two or 
more errors occurring in encoded data bits of length f.   
err = 1 – (0.99)f – f(0.99)f-1(0.01)   (1) 

 
The bits error rate result is displayed in the first box of sk 
after the termination of execution.  The second box of sk 
displays the number of errors occurrences.  The third box 
of sk displays the total number of bits (bn) transmitted. 
The logical inference and relationship between the 
components are represented in figure 2, which contains a 
sample of the readings of HEDC [(1023, 1013)].  
 

 
Fig. 6. Readings of Error Data (AN-VE) After Computation. 

 
Table 4. Computational Readings. 
 

Bits error rate 
(err) Number of errors Transmitted bits 

Encoded data 
bits length 

(f) 

Data bits 
(g) 

Parity bits 
(s) HEDC AN-VE HEDC AN-VE 

9.474e+004 7 4 3 0.001066 0.0057 101 54 
5.007e+004 15 11 4 0.001997 0.0002397 100 12 
2.415e+004 31 26 5 0.00414 0.000207 100 5 
1.664e+004 63 57 6 0.006068 0.000201 101 4 
1.02e+004 127 120 7 0.0101 0.00103 103 2 
8151 255 247 8 0.01227 0.00114 100 9 
9036 511 502 9 0.01162 0.001771 105 16 
1.013e+004 1023 1013 10 0.01076 0.001382 109 14 
1.018e+004 2047 2036 11 0.01041 0.001081 106 11 

0
20
40
60
80
100
120

N
um

be
r o

f E
rr
or
 

Transmitted bits

HEDC

AN‐VE

 

Fig. 7. Available Errors in Transmitted Bits after Applying HEDC and AN-VE Techniques. 
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AN-VE:  
For AN-VE, the source x is the Bernoulli Binary 
Generator. Next the Hamming encoder encodes the 
original stream of message bits g before it is sent through 
the Binary Symmetric Channel (BSC) that adds binary 
errors to the input signal (see Fig. 3).  The cyclic encoder 
creates the systematic cyclic bits with message length K 
and encoded SMB length N in the binary cyclic encoder.  
The code rate is: 

Code rate = ge/fe = message bits length/ encoded SMB 
length 

where ge is the message length and fe  is the length of the 
derived encoded data bits and “a” denotes the check bits 
such that ge = 2a − a − 1, fe = 2a − 1, a  3. Then the input 
SMB is modulated using the binary phase shift keying 
(BPSK) method, which is a technique for modulating a 
binary signal onto a complex waveform by shifting the 
phase of the complex signal. In digital baseband BPSK, 
the symbols 0 and 1 are modulated to the complex 
numbers exp(t) and -exp(t), respectively, where t is a 
fixed angle. Thus for t = 0, these numbers are just 1 and -
1. The AWGN channel add white Gaussian noise to the 
input codes and it is more robust than the binary 
symmetric channel in some specific applications because 
it accepts both real or complex codes and it supports 
multichannel input and output codes inputs  as well as 
frame-based processing. The Hamming decoder parses 
through the n-bit binary position on the received SMB 
bits and decodes the data after it is sent through the 
channel.  It verifies if an error is created in the original 
data bits by the noise in the channel, identifies the error 
and decodes the data received to the original data bits 
correctly. The system repeats this process till all n-bit 
binary positions is parsed and both transmitted and 
received codes are equivalent.  After each AN-VE Parsing, 
the bits error rate (err) of the created SMB and received 
SMB is computed at z, which detects and computes the 
error rate of the channel using the values of the 
transmitted signal Tx and the received signal Rx ports. 
The block compares the two signals and checks for errors. 
The output depicted as sk is a vector with three entries: bit 
error rate, number of errors and total number of bits 
transmitted.  
 
RESULTS AND DISCUSSION 
 
The readings of the upper section of figure 4 reveal the 
channel of uncorrected errors in an encoded SMB 
generated by the channel coding of HEDC, which are 
pulses represented as 1s.  The readings of the lower 
section of figure 4 shows the same encoded SMB but with 
fewer errors at the end of each 5000 time steps.  
 
A proximity assessment of upper section of figure 4 
shows that in the single encoded SMB, two 1s represented 
as the wider rectangular pulse, are errors not corrected, 

whereas the narrower rectangular pulse to the right of the 
upper section represents a single error, which is corrected 
(see Fig. 5).  The two 1s, which are uncorrected, accounts 
for the uncorrected errors in the lower section.  
 
Figure 6 shows the performance of AN-VE with the upper 
and lower sections of the figure revealing the channel of 
uncorrected and corrected errors respectively.  It is 
evident that with the same number of bits transmitted (see 
Table 4), AN-VE performed better, for the two 1s which 
are uncorrected, are far less than is the case with HEDC, 
this is also shown in figure 7, which reveals the number 
errors left over in the transmitted bits after the application 
of both techniques.  
  
CONCLUSION 
 
Fault tolerance solutions can be implemented using 
various methodologies. Each method has its own tradeoffs 
in terms of strength in detecting errors, potency in 
correcting errors, portability, and ease of use. We 
proposed a detecting and correcting technique that is more 
robust than HEDC because although HEDC is quite 
useful in cases where only a single error is of significant 
probability, the technique can only be used to detect up to 
two simultaneous bit errors and correct single errors, both 
cannot be done simultaneously.  Also because the 
technique can only correct one error in each transmitted 
stream of message bits, if more than one error occurs, the 
Hamming decoder does carry the hazard of miscorrecting 
double errors. Conversely, AN-VE enables the detection 
of any number of simultaneous bit errors and corrects all 
errors and both can be done simultaneously. Furthermore 
unlike the HEDC which deals with error detection after 
data transmission, AN-VE addresses error detection right 
from the transmitter domain.  AN-VE can detect the 
erroneous bit in a transmitted code because every 
transmitted code is repeated several times in order to 
verify its accuracy.  
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