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ABSTRACT 
 

We show explicitly in this contribution that with a correct identification of the underlying symmetry group to the 
physical system that represent a finitely many harmonic oscillators in the Euclidian plane, namely the dynamical 
symmetry group U(rd)=UN(1)×SU(rd), it’s possible to remove fully the degeneracy that such systems carry for which, 
furthermore, there is no need to show the importance in physics. In this group notation, r=2 refers to as the dimension of 
the plane, while d is the number of particles. 
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INTRODUCTION  
 
The physical systems that models the harmonic oscillator 
are of first importance since, despite it’s a matter of 
extrem simplification from the point of view of the 
complexity of nature, they take already inside themselves 
the germs of the most spectacular results obtained for 
models nearby to reality. Except for the macroscopic 
oscillators like simple or elastic pendulum and all the 
other similar systems who are also interesting in physics 
but whose study we are not going to do in this paper, we 
will concentrate on microscopic physical systems in the 
nonrelativistic approximation. We stay then in Quantum 
Electrodynamic (QED) domain which belongs to 
Quantum Field Theory, at least in its quantum mechanical 
limits. Already at the classical level we have the 
electromagnetic theory of Maxwell in the abelian case 
whose equations lead to solutions that propagate by 
oscillating in space-time. At the quantum level one 
associates to the field a particle (and vice versa) which 
carries a quantum of energy by oscillating also. In this 
paper we proceed to a dimensional reduction in making 
abstraction of the space dependence for the degrees of 
freedom of the system. One talks about theory in 0+1 
space-time dimension. We fall hence into the domain of 
quantum mechanics with finite number of degrees of 
freedom. 
 
Moreover, beside each group and its representations in 
mathematics, an important (sometime highly) physical 
phenomenon is hidden. Explicitly, the degeneracies that 
are defined basicly in quantum physics as the set of states 
which share the same energy level (and thus a priori 
indiscernible), hide very different representatives of a 
symmetry group. Identify this group amounts to help 
oneself to get this magnifying glass which allows to 

unveil the microscopic system. 
   
Consequently, there has been a great interest in the study 
of the harmonic oscillator at quantum level and 
particularly in relation with revolutionary tools skillfully 
borrowed to the theory of groups and representations. In 
their contribution, firstly aimed at testing and then 
showing the facilities offered by the physical projector, 
Govaerts and Klauder (Govaerts and Klauder, 1999) 
studied a system consisting of d oscillators (d < ∞) in the 
plane. They have shown that when one takes into account 
the global symmetry SO(d) in addition to the SO(2)  local 
symmetry also called gauge symmetry, it’s possible to 
eliminate the degeneracies from the system. However, as 
it will be shown in the next lines, and as these authors 
have already pointed out in their paper, this manner of 
removing the degeneracies is not fully effective. 
  
In this contribution, taking into account their modern 
quantization method as well as their results and the open 
issues raised in their paper, we prove that in taking into 
account a wider and then more subtle group than SO(d), 
i.e. the dynamical symmetry group U(rd)=UN(1)×SU(rd) , 
all the quantum states of this physical system are 
identified through specific quantum numbers 
characterizing the irreducible representions of this group. 
 
The outline is as follows. In the next section we recall the 
main results obtained in the paper by Govaerts and 
Klauder (Govaerts and Klauder, 1999)  showing that it 
still remains a persistent degeneracy in the spectrum. 
Then in section 3 we identify all the states of the system 
through the dynamical unitary symmetry group 
U(rd)=UN(1)×SU(rd) , where r=2 is the dimension of the 
space in which the gauge group acts i.e. the plane, while d 
is the number of particles i.e. the dimension of the global 
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symmetry group. Some concluding remarks are finally made in section 4. 

HARMONIC OSCILLATORS IN THE PLANE: 
MAIN RESULTS 
 
In this section, beyond the main results whose account is 
to be found in the paper by Govaerts and Klauder 
(Govaerts and Klauder, 1999) we stress two concepts: The 
Dirac quantization algorithm for constrained systems and 
the physical projector, two tools which need to be tamed. 
 
Consider in the ordinary two dimensional Euclidean plane 
a  system of d harmonic oscillators (d < ∞) of identical 
mass normalized to unity (for simplicity without loss of 
physical content). The Lagrange function describing such 
system can be written as follows, with a,b taking their 
value in the set  {1, 2}, 

 
1

2g2 (q̇i
a –λεab qi

b)2 –V (qi
a), i= 1,2,� ,d (1)

 
 

 The degrees of freedom of the system are given by the 
real variable λ(t) and the set of 2d real variables q(t) 
depending only of time and whose dynamics is described 
by the above Lagrangian. εab is the two dimensional 
antisymmetric tensor such as ε12=- ε21=1. V(q) is the 
quadratic function describing the harmonic interaction, 
 

V (qi
a)= 1

2
ω2 qi

a qi
a . (2)

 
 
The model is then gauge invariant SO(2) and possesses a 
global  symmetry SO(d) associated to the a priori 
indiscerniblity of particles, justifying hence the name 
given to it: model SO(2)× SO(d) or simply 2 × d. In fact, 
the above model represents physically a dimensional 
reduction from (D-1)+1 to 0 + 1 space-time dimensions of 
some pure gauge theory of SO(2)  local symmetry 
(abelian) with addition of a mass term which is also 
properly gauge invariant. Indeed, let’s consider the Yang-
Mills Lagrangian density in some D-dimensional 
Minkowski space-time endowed with the metric structure 
ηµν =diag(+,--…-), given by                                                      
   

L=-(1/4) Fµν
a Fa

µν ,    
    Fµν

a =∂µ Aν
a - ∂ν Aµ

a – gfabc Aµ
b Aν

c ,    (3) 
 

where Fµν is the electromagnetic tensor deriving from the 
gauge field Aµ

a. a and µ are the Lie algebra index 
associated to some an a priori non-abelian group and the 
space-time index, respectively. g is the coupling constant 
and fabc is the structure constant of the considered group. 
Then, in the limits of the abelian theory1, the dimensional 

                                                 
1  In this case, the term gfabcAµ

aAν
c vanishes. 

reduction transforms the variables as follows 
 
Aµ

a (x, t) →  
Aµ

a (t) {Ai
a (t) ≡ qi

a(t),  A0
a (t) ≡ λa(t)} .     (4) 

 
The equations of motion are established from Lagrange-
Euler formula d/dt{∂L/∂(∂tqi)}− ∂L/∂qi=0. Specifically, 
with the gauge condition λ(t)=0, we obtain the following 
equations which characterize the dynamics of a set of d 
oscillators constrained to have a vanishing angular 
momentum in the plane, 
 
∂t

2qi
a = −g2ω2qi

a ,     εabqi
a∂t qi

b = 0.     (5) 
 
Note that from the point of view of group theory, this 
constraint is predictible. Indeed, the SO(2) gauge 
invariance implies, from the Noether theorem, that the 
angular momentum is conserved and moreover vanishes 
for gauge invariant configurations. The classical 
hamiltonian formulation with the appropriated symplectic 
structure, using the Dirac algorithm for constrained or 
singular systems (Govaerts, 1991) presents as follows : 
 
 
H = Ho + λ(t)ф,  Ho =½[ g2(pi

a )2 + ω2 (qi
a)2 ], 

ф = εabpi
aqi

b ,   {qi
a , pj

b} = δabδij .      (6) 
 
In this notation, Ho represents the fundamental 
Hamiltonian while λ turns out to be the Lagrange 
multiplier for the first class constraint ф. 
  
From now, the canonical quantization of the model is 
rather straightforward. The classical phase space variables 
may be put in correspondence with quantum quantities2 
which must be self-adjoint for an unitary time evolution 
of the system. However this simplistic way will not be 
exclusively the only one to be followed, because the aim 
is to work out the physical spectrum from the wide set of 
states for the system. For this purpose, the Klauder’s 
physical projector (Klauder, 1997, 1999, 2001) has proved 
to be particulary usefull. An educational account of the 
construction and the advantage offered by this projector is 
given in (Goverts and Klauder, 1999). We won’t com 
back to this detailed development, but we give only the 
results with emphasize on some unavoidable details. 
  
The first step in a quantization procedure, having in hand 
the quantum cartesian basis, is to identify an appropriate 
Hilbert space (quantum space) on which the spectrum 
could be easily reached. The Fock basis is a natural choice 
for harmonic systems. Here, this basis is extended to its 

                                                 
2 We will omit the hat over the quantum operators  

corresponding to classical variables. 
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helicity sector exploiting the advantage to be in the plane. 
Moreover, for technical reasons, the coherent state 
helicity basis is used. This quantum cartesian basis is 
obtained through the Heisenberg algebra spanned by the 
following relations, 
 
(qi

a)† = qi
a , (pi

b)† = pi
b , {qi

a , pi
b} = iћδabδij .     (7) 

 
The quantum composite operators linked to the classical 
phase space variables are given by 
 
 H = H0 + λ(t)ф,  H0 = ½ g2 pi

api
a + ½ ω2qi

aqi
a , 

    ф = εab
 pi

aqi
b .          (8) 

 
Remark that these quantities do not suffer of any 
ambiguities related to the physical concept of normal 
ordering for operators that not commute. Moreover, the 
gauge invariance of the system is ensured since [H0 , ф] = 
0. 
 
The annihilation and creation operators in the helicity 
basis write as follows 
 
αi

± = -(1/√2)[-αi
1 ± iαi

2 ], αi
±† = (1/√2)[αi

1† ± iαi
2†] ,  αi

a  = 
(ω/2ћg)½[qi

a + i(g/ω)pi
a],       (9) 

 
with the following commutators 
 
[αi

+ , αj
+†]= δij = [αi

− , αj
−†],     (10) 

 
as well as the Hamiltonian and the gauge generator given 
by 
 
H0 = ћgω[ αi

+† αi
+ + αi

−† αi
− + d]= ћgω[N + d],  ф = 

−ћ[αi
+† αi

+ − αi
−† αi

−].        (11) 
 
The Fock helicity orthonormalized basis is thus spanned 
by the following kets 
 
|n i± >=Πd

i =1 (1/ni
+!ni

−!) ½(αi
+† )ni+ (αi

−†) ni− |0 >,      (12) 
 
showing that the Hamiltonian as well as the unique first 
class constraint are diagonalized, as follows 
 
H0 |ni

± > = ћgω[Σd
i =1  (ni

+ + ni
−) + d]|ni

± > ,  
ф|ni

±>= − ћ(ni
+ − ni

−)|ni
± > .         (13) 

 
At this step of the quantisation procedure, one can already 
clearly see that the physical states of the system i.e. the 
states annihilated by the first class constraint ф, are those 
for which the sum of the right helicities equals the sum of 
the left helicities, the so called matching condition, 
 
Σd

i =1{ni
+} = n = Σd

i =1{ni
−},     (14) 

 
whereas the energy levels of these states are given by 
 
En = ћgω(2n + d), n = 0, 1, 2, . . . .     (15) 

One can think that the system is hence solved; but two 
questions readily arise. Are the above states really 
physical? Otherwise, are there respectfull of the famous 
matching condition? In the other hand what are the 
degeneracies for d ≥ 2? 
 
As we shall see, the answer is negative and the projector 
evoked above is the appropriated tool for selecting the 
physical states and highlighting their degeneracies. 
Furthermore, the coherent states basis allows to take 
better advantatge of the facilities offered by this operator. 
The helicity complexe variables to be used for the 
construction of the helicity coherent states are given by 
 
zi

± = -(1/√2) [-zi
1 ± izi

2],   
(zi

±)*† = (1/√2) [(zi
1)*† ± i(zi

2) *†],    
zi

a = (ω/2ћg)½[qi
a + (ig/ω)pi

a],       (16) 
 
where (zi

±)*  stands for the conjugated complexe of (zi
±), 

while (zi
±)*† is the adjoint of (zi

±)*. The corresponding 
helicity states are given by 
 
|zi

± > = exp{−(1/2)|z|2} exp{zi
+αi

+†} exp{zi
-αi

-†}|0 > .  (17) 
 
Indeed (Govaerts and Klauder, 1999) the physical 
projector is an operator which, being applied onto any 
quantum space quantity, constructs a physical (gauge 
invariant) one by averaging over the manifold of the 
gauge symmetry group, all finite gauge transformations 
generated by the first-class constraint of a system. 
 
In the framework of our model where the gauge group is 
simply SO(2) for which the manifold is the unit circle 
parmetrised by the rotation angle 0 < θ < 2π, the physical 
projection operator is represented as follows 
   

P= 1
2π ∫ dθ exp(− i

ћ
θф), (18)

 
 
with the fundamental properties 
 
P2 = P,    P† = P.       (19) 
 
The physical time propagator of the system then writes 
 
Uphys (t2 , t1 ) = U (t2 , t1 )P = P U(t2 , t1 )P,     
U (t2,t1 ) = exp{−(i/ћ)∫t1t2 dt [H0 + λ(t)ф]}.    (20) 
 
Let us introduce the complexe parameter 
 
x = exp{(−i/ћ)(t2 – t1)ћgω}.     (21) 
 
By integrating over the rotation angle θ and after some 
computations, one gets 
 
Uphys (t2,t1) = xdxNP,       (22) 



Canadian Journal of Pure and Applied Sciences 

 

2583

where N is the standard excitation levels operator. This 
expression shows that we are finally led to study the 
operator 
 
xN P,           (23) 
 
which encodes the physical spectrum of the model. 
 
Hence denoting these physical states of energy 
En=ћgω(2n + d) by |En , µn>, µn being  the degeneracy 
index , we set 
 
 P= ΣEn ,µn {|En , µn >< En , µn |},  
< En , µn |Em , µm >= δnm δµn,µm ,      (24) 
 
so that we have the following expression for the physical 
propagator 
 
Uphys (t2, t1 ) = 
 ΣEn ,µn {exp[−(i/ћ)(t2 −t1)En] |En , µn >< En , µn|}= 
  = exp{−i(t2 −t1)gωd}× 
  × exp{−i(t2−t1)2n gω}|En,µn><En,µn|.        (25)             
                                                              
Consequently, the time dependence of xd xN P determines 
the energy levels, while the matrix elements of this 
operator give the associated wave function. 
 
• For the energy spectrum and their degeneracies it 
suffices to work out the trace of the operator (23). Indeed, 
by comparing equations (22) and (25), we obtain 
 
ΣEn ,µn {x(2n+d) |En , µn >< En , µn|}= 
PxdxN P = xdxNP.                      (26) 

 
This shows that the trace of this operator is nothing but 
the partition function of the spectrum 
 
TrxNP =  Σ∞n=0 {dn x2n},       (27) 
 
where the coefficients3 dn, n � N, specify the 
degeneracies of energy levels En = ћgω(2n+d) of physical 
states. 
 
• Concerning the physical states, their representations in 
the configuration space in terms of wave functions are 
generated by the diagonal matrix elements of the operator 
(23): 
 
< zi

± |xN P|zi
± > = Σ n,µn {x2n | < zi

± |En , µn > |2}.    (28) 
 

Remark that this expression lets see already that these 
wave functions will simply be polynomials, showing the 
interest of the choice of coherent states basis. 
 
                                                 
3  One must not confuse dn with d which represents the 
number of particles. Moreover, throughout the text, N 
stands for the set of the natural numbers. 

Coming back to the spectrum, we have, with  0 < θ < 2π, 
 

TrxN P= 1
2π ∫ dθ 1

[1− xeiθ ]d[1− xe− iθ ]d
. (29 )

 
 
The degeneracies appear immediately in comparing (27) 
and (29): 
 
dn = [(d − 1 + n)!]2 [(d − 1)!n!]-2,   
En = ћgω(2n + d),  n = 0, 1, 2, . . . .      (30) 
 
It appears through this result that the degeneracies appear 
for d ≥ 2 and grow with the number d of particles. So, the 
first idea for their elimination is to take into account the 
indiscerniblity of the d harmonic oscillators sharing the 
same frequency ω in the Euclidean plane. In other words, 
a global SO(d) symmetry must be added to the gauge 
symmetry SO(2). 
 
In terms of quantum helicity degrees of freedom 
previously defined, the d(d−1)/2 generetors of SO(d) are 
given by 
 
Lij = iћ[αi

a † αj
a − αj

a† αi
a] = 

= iћ [αi
+† αj

+ + αi
−† αj

− − αj
+† αi

+ − αj
−† αi −],       (31) 

 
with the following algebra 
 
[Lij , Lkl ] = −iћ(δik Ljl − δil Ljk − δjk Lil + δjl Lik ).      (32) 
 
Note that Lij are the equivalent of angular momentum 
operators in the hyperplane of dimension d. Denoting by 
(Tij) the tensors which allows the matrix represention in 
the d-dimensional space of the generetors of the SO(d) 
global symmetry, we can write Lij as follows 
 
Lij = α†·(Tij )·α,     (Tij )kl = iћ(δikδjl − δilδjk),       (33) 
 
with the d×d rotation matrix in SO(d) parametrised by the 
hyperangle ωij given by 
 
Rkl (ωij ) = (e−(i/2)ωij Tij)kl .      (34) 
 
Finally, these generetors act onto the helicity coherent 
states and the creation operators as follows 
 
e−(i/2)ћωij Lij|zi

± >= |Rij (ωij )zj
±>,   

e−(i/2)ћωij Lijαi
±† e(i/2)ћωij Lij = αj

±† Rji (ωij).    (35) 
 
Having set the required elements, the evaluation of the 
partition function extended to SO(d) (i.e. the SO(d)-
valued partition function) becomes possible. We have 
 
Tr xN exp{−(i/2ћ)ωij Lij}P = 
 =  ∫02π  dθ/2π{ det [δij − xeiθ R ij (ωij)]× 
         det[1− xe−iθ Rij (ωij)] }-1.                        (36) 
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However, instead of the evaluation of this expression for 
arbitrary ωij , which is absolutely possible, it’s better to 
only consider a maximal commuting subalgebra among 
the generetors Lij, namely the Cartan subalgebra (Slansky, 
1981). In fact, as it has been explained in the paper 
(Govaerts and Klauder, 1999), representations of compact 
semi-simple Lie agebras may be characterized by the 
Dynkin labels of the Dynkin diagram related to the Cartan 
subalgebra. We have to distinguish the cases whether d is 
even or odd. Consequently, in order to proceed with the 
calculation of the SO(d) valued partition function 
restricted to the Cartan subalgebra, it proves useful to first 
consider the simple cases with d=1 and d=2, which will 
display the structure of the general solution. 
 
 i) Case d = 1 
 
Here there is no global symmetry since there is only one 
particle. Consequently, the corresponding partition 
function is identical to that obtained in relation (29) with 
d = 1, 
 
Tr xN P =  ∫02π  dθ/2π{ [1 − xeiθ ][1 − xe−iθ ]}-1  
             =  Σ∞n=0  x2n = (1 − x2)-1 .              (37) 
 
ii) Case d = 2 
 
The global symmetry in the index i = 1, 2 is that of SO(2). 
Taking then into account the helicity basis, the only 
generetor of the abelian SO(2) group defining trivially the 
Cartan algebra gives 
 
L12 = iћ[α1

±† α2
± − α2

±† α1
± ] =  

      = − ћ[α+
±† α+

± − α−±† α−± ].     (38) 
 
This operator acts onto the coherent states as follows 
 
e−(iћ)ω12 L12|z±

± >= |e±iω12 z±
± > .   (39) 

 
Hence the expression (36) reduces to   
 
Tr xN exp{−(i/ћ)ω12 L12}P  =  
    = ∫02π  dθ/2π {[1 − xei(θ+ω12) ][1 − xei(θ−ω12) ]× 
     ×[1 − xe−i(θ−ω12) ][1 − xe−i(θ+ω12 )] }-1 
    = Σ∞n=0 x2n  Σ+n

p=−n {(n + 1) − |p|}e2ipω12 .       (40) 
 
Finally, for the d = 2, all the dn = (n + 1)2 physical states 
sharing the same energy level En may be listed in the one 
dimensional representations of the global symmetry 
SO(2) = U (1) indexed by the whole helicity p so that −n 
≤ p ≤ n with however a persistent degeneracy given by 
 
d(n, p) = n + 1 − |p|,       (41) 
 
for each of these helicity representations, i.e. for each p. 
Obviously we have the following verification 
 
Σ+n

p=−n {d(n, p)} = (n + 1)2 = dn , n = 0, 1, . . . .   (42) 

Clearly, the consideration of the global symmetry in the 
case d = 2 allows to remove only partially the degeneracy, 
since for a given p there is still d(n, p) ≠1 states sharing 
the energy En. It means that at quantum level, there is a 
more wider symmetry than the global symmetry SO(d = 
2). This is the global dynamical symmetry associated to 
the group U (rd) = U (2d). 
 
These first two examples are suggestive enough of the 
general structure of the organization of the system as far 
as the global SO(d) symmetry is concerned in addition to 
the local or gauge symmetry. Thus for the case d = 3, we 
have again one generetor of Cartan, while for d = 4, one 
could have two generetors of Cartan. We are now able to 
generalize according to the parity. However we will not 
do it since it is a matter of technical hability and it has 
been properly done in (Govaerts and Klauder, 1999). 
 
 
THE U (rd) = UN (1) × SU (rd)   DYNAMICAL 
SYMMETRY 
 
This paragraph stands for our contribution to the complete 
identificaton of the physical states of the gauge invariant 
SO(2) model. In the previous paragraph the equation (41) 
shows that the consideration of the global symmetry 
SO(d) doesn’t allow to remove fully the degeneracies, 
even though they are partially removed. It appears clairly 
that quantized, the system admits a symmetry  more wider 
than the global symmetry SO(d). This is the dynamical 
global unitary symmetry U(rd) = UN(1) × SU(rd) of wich 
gauge invariant states we are going to identify in the 
system. In this notation, r = 2 refers to as the dimension of 
the space in which the gauge group denoted G acts4 while 
d is the dimension of the space on which the global 
symmetry group acts. 
 
Let us begin with the simplest case d = 2 before a 
generalization. 
 
The model G = [SO(r = 2), d = 2] 
 
The dynamical symmetry of a spherical harmonic 
oscillator in the plane is rather SU(2) instead of SO(2). It 
is well known that the group SU (2) possesses three 
generators T1 , T2 and T3 in the cartesian basis. Their 
expressions are obtained by means of arbitrary unitary 
linear combinations of quantum cartesian or helicity 
coordinates. 
 
It is common (usefull) to redefine the two first generators 

                                                 
4  This space, which is here the ordinary two 
dimensional Euclidean plane, has nothing to do with the 
manifold of the associated gauge group which is the unit 
circle, and thus of dimension 1. 
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to obtain the helicity generators T± associated to the 
remaining, T3 , 
 

[Ta , Tb ] = iεabcTc,  T± = T1 ± iT2 ,   
T1 = (1/2) [T+ + T−],  T2 = (1/(2i)) [T+ − T−] , 

[T+ , T−] = 2T3 ,   [T3 , T± ] = ±T± ,    
T2 = (1/2) (T+ T− + T− T+ ) + T3

2 .        (43) 
 
It is also well known that in the representation of spin t, 
the eigenvalue of the Casimir operator   
T2 =T1

2 + T2
2 + T3

2 is t(t+1), while the generator 
associated to UN(1) is the excitation levels operator N of 
quantum numbers n. 
 
Hence, if m is the eigenvalue associated to T3, one easily 
shows that −t ≤ m ≤ t , so that the weight diagram of SU 
(2) which is a group of rank one is the sector of the m-
axis confined between −t and +t. One shows then that the 
states determined by the kets  T±|t, m> are eigenstates of 
T3 with the eigenvalues (m±1). In abstract, the spin 
representation is given by 
 
 T2 :  t(t +1), t � N, N + 1/2 , 
 T3 |m> = m|m> , <m|m'> = δmm' ,  
m = −t, −t+1, · · · , t −1, t    ,            (44) 
 
 T± |m> = [t(t + 1) − m(m ± 1)]1/2|m ± 1> ,  
T2 |m> = t(t + 1)|m> . 
 
This clearly means that starting from the highest weight 
state m = t and by application of T− , one falls imediately 
onto the previous state in the weight diagram and so on. 
The same considerations is absolutely possible starting 
from the states of lowest weight by successive 
applications of the operator T+ . These facts are 
fundamental, since it is henceforth possible to identify all 
the representatives of this symmetry. 
 
For an harmonic oscillator corresponding to the case d = 
1, we know that at the excitation level n, the quantum 
numbers t and m caracterizing SU(2) are given in the 
helicity basis by 
 
 |n+, n−> = [n+!n−!]-1/2(α+

†)n+(α−†)n− |0 >, n = n++n− , m 
=(1/2 )(n+ − n−),   t =(1/2) (n+ + n−),      (45) 
 
giving hence the indispensable relation between the 
quantum numbers n, t and m for this case. 
 
In conclusion, for an harmonic oscillator in the ordinary 
Euclidiean plane and for fixed value of the quatum 
number n = n+ +n− , the states |n+ , n− > sharing the same 
energy level  ћω(n+1) span the totaly symmetric 
representations of SU(2) of dimension n + 1 = 2t + 1. 
These states of spin t = n/2 are distinguished by their 
eigenvalues of T3 , i.e. (n+ − n− ), and are related by the 
operators T+ and T− . This procedure is resumed until 

exhaustion of t. In particular, the physical states in the 
contexte of the considered gauge invariant model here 
will be those corresponding then to the eigenvalue m = 0. 
 
Let us apply the same analysis to the case d=2 of our 
model. In this case, the following choices may be done to 
facilitate the identification of the physical states. The 
inclusions of the gauge group SO(2) and that of the global 
symmetry group SO(d = 2) into  
SU(r = 2) and SU(d = 2) respectively are chosen such 
that 
 
• ф coincides with the generator T3 of the Cartan 
subagebra of SU(r = 2). 
• L12 coincides with the generator T3 of the Cartan 
subalgebra of SU(d = 2). 
 
Consequently, the physical states are such that the 
eigenvalues of T3 for SU(r = 2) vanish and that of T3 for 
SU (d = 2) corresponds to the helicity quantum number p 
of SO(d = 2). Finally, in addition to the excitation 
quantum number n, the physical states are charcterized by 
the quantum numbers of SU(d=2) i.e. the value of the spin 
t and that of T3 in SU(d = 2) which is represented here by 
m. 
 
Let keep ourselves to the concrete determination of the 
gauge invariant states within the representation of the 
global dynamical symmetry SU(2) = SU(d = 2). Let us 
note these states as follows 
 
|n, t, p = m > .        (46) 
 
The generators of this symmetry SU(2) are given in the 
appropriated basis by 
 
 T1 = (1/2 )[α+

+† α−+ + α−+† α+
+] +  

        + (1/2) [α+
-† α−- + α−-† α+

-] , 
 
 T2 = −(1/2i)[α+

+†α−+ − α−+†α+
+]  

          −(1/2i)[α+
−†α−− − α−−†α+

−] ,          (47) 
 
 T3 = (1/2)[α+

+† α+
+ − α−+† α−+] +  

        + (1/2) [α+
−† α+

− − α−−† α−− ],  
 
T± = T1 ± iT2 = α±

+† α+
+ + α±

−† α−− , 
 
while the excitation levels operator also called number 
operator is given by 

 
N = α+

+† α+
+ + α−+† α−+ + α+

−† α+
− + α−−† α−− .  (48) 

 
To tell the truth, one can start from the general Fock states 
given in Eq. (12) and determine each of the quantum 
numbers n±

± such that the above two conditions of 
immersion of SO(2) into SU(2) are realized, begining 
from the highest weight state for which t = p = n and 
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going down step by step by application of T− with the 
intention of identifying all the 2n + 1 physical states 
associated to this highest weight state, with the quantum 
number given by 
 
n = n+

+ + n+
− + n−+ + n−− .     (49) 

 
The operation is repeated for the following highest weight 
states until the display of the (n+1)2 physical states 
expected through the degeneracy. 
 
However, instead of going down that long path, one can 
start from a state whose general  structure takes already 
into account these requirements and construct directly the 
expected particular states. 
 
Hence, the physical states may be represented as follows 
 
[(n+++ n+− )!(n−+ + n−−)!(n++ + n−+ )!(n+− + n−− )!]-1/2× 
(α+

+†α+
−†)n++(α+

+†α−−†)n+−(α−+†α+
−†)n−+(α−+†α−−†)n−−|0 >, (50) 

 
so that the quantum number associated to the operator N 
is given by 
 
N = (n++ + n+− ) + (n−+ + n−− ) + (n++ + n−+ ) +  
(n+− + n−− ) = 2n,      (51) 
 
and that associated to T3 writes 
 
m=p= (1/2) [(n++ + n+− ) − (n−+ + n−− ) + 
+ (n++ + n−+ ) − (n+− + n−− )] = (n++ − n−− ).     (52) 
 
From Eq. (42), we know that for a given n, there is (n + 
1)2 states distinguished by their quantum numbers t and p 
(associated to the dynamical symmetry SU (2)) sharing 
the same energy level whose first highest weight state is 
given by t = p = n. 
 
By using the following usefull formula, we can identify 
explicitly the physical states. 
 
T− |t, p >= [(t − p + 1)(t + p)]1/2 |t, p − 1 > .     (53) 
 
1. The fundamental level n = 0 = N  
 
The highest weight state which stands at the same time of 
the singlet of the representation in this case is given by 
      
  |0, 0, 0 >,        (54) 

 
such that 
T3 |0, 0, 0 >= 0,  T+ |0, 0, 0 >= 0 = T− |0, 0, 0 > .       (55) 

 
2. The level n=1, N=2n=2 
 
i)  Maximal weight state   t = p = n = 1 
|1, 1, 1 >= α+

+† α+
−† |0 > .         (56) 

This state is normalized such that T+ |1, 1, 1 >=0. 
 
i)-1  Previous state 
The state before |1, 1, 1 > is |1, 1, 0 > such that  
T− |1, 1, 1 >= 21/2|1, 1, 0 > . We have 
 
|1, 1, 0 >= 2-1/2 [α−+† α+

−† + α−−† α+
+†] |0, 0, 0 > .    (57) 

 
i)-2  State before |1, 1, 0 > 
 
The previous state is |1, 1, −1 > such that  
T− |1, 1, 0 >= 2½|1, 1, −1 > . Consequently, we have 
 
|1, 1, −1 >= α−+† α−−† |0, 0, 0 > .        (58) 
 
This state is the last of the subgroup of states 
characterized by the spin t = 1, since we have  
T− |1, 1, −1 >= 0. 
 
ii)  Following state of highest weight : t = p = 0 
 
It is given by 
 
|1, 0, 0 >= 2-1/2 [α−+† α+

−† − α−−† α+
+† ]|0, 0, 0 > .       (59) 

 
In conclusion at the level n = 1 the set of  
4 = (1 + 1)2 states sharing the energy level En presents as 
follows 
 
{|1, 1, 1 > |1, 1, 0 >, |1, 1, −1 >, |1, 0, 0 >} .    (60) 
 
3. The level n=2, N=2n= 4 
The construction of the corresponding states follows 
strictly the same principle as above. 
 
i)  State of highest weight  t = p = 2 
 
|2, 2, 2 >= (1/2) (α+

+† α+
−† )2 |0, 0, 0 > .    (61) 

 
i)-1   Previous state to |2, 2, 2 >:    
        |2, 2, 1 >= (1/2) T− |2, 2, 2 > 
 
|2, 2, 1 >= (1/2) (α−+† α+

−† + α+
+† α−−† )α+

+† α+
−† |0, 0, 0 >. 

 (62) 
 

i)-2  State before |2, 2, 1 >:  
   |2, 2, 0 >= 6-1/2T− |2, 2, 1> 
 
   |2, 2, 0 > = (1/2) 6-1/2 {(α−+†)2 (α+

−† )2 +  
+(α+

+† )2 (α−−† )2 + 4α+
+† α+

−† α−+† α−−†}|0, 0, 0 > .    (63) 
 
 
 

i)-3  Previous state to |2, 2, 0 > 
 
|2, 2, −1 >= 6-1/2 T− |2, 2, 0 >= 
(1/2){α−+† α+

+† (α−−† )2 + α+
−† α−−† (α−+† )2 }|0, 0, 0 >    (64) 
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i)-4  Previous state: 
 |2, 2, −2 >= (1/2) T− |2, 2, −1 > 
|2, 2, −2 >= (1/2)( α−+† α−−†)2 |0, 0, 0 > .     (65) 

 
ii)  Following state of highest weight: t = p = 1 
 
|2, 1, 1 >= 
(1/2) (α−+† α+

−† − α+
+† α−−†)α+

+† α+
−† |0, 0, 0 > .    (66) 

 
ii)-1  Previous state to |2, 1, 1 >:     
        |2, 1, 0 >= 2-1/2 T− |2, 1, 1> 
       |2, 1, 0 >=  
     2-3/2 {(α−+†)2 (α+

−† )2 − (α+
+†)2 (α−−†)2 }|0, 0, 0 > . (67) 

 
ii)-2  Previous state to |2, 1, 0 >:   
         |2, 1, −1 >= 2-1/2 T− |2, 1, 0 > 
 
        |2, 1, −1 >=  
(1/2){(α−+†)2 α+

−† α−−† − (α−−† )2 α−+† α+
+†}|0, 0, 0 > . (68) 

 
iii)  Following state of highest weight: t = p = 0 
 
|2, 0, 0 >= (1/2√3)[ (α−+†)2 (α+

−† )2 +  
+(α+

+† )2 (α−−† )2 − 2α+
+† α−+† α+

−† α−−† ]|0, 0, 0 > . (69) 
 
One can easily check that T− |2, 0, 0 >= 0, showing that 
there is no state beyond. In conclusion, the set of the nine 
physical states at the excitation level n = 2 is given by 
 

{|2, 2, 2 >, |2, 2, 1 >, |2, 2, 0 >, |2, 2, −1 >,  
|2, 2, −2 >, |2, 1, 1 >, |2, 1, 0 >, |2, 1, −1 >,  

|2, 0, 0 >} .                (70) 
 
Having hence the general structure of the repartition of 
the physical states for these two first energy levels, one 
can generalize for an arbitrary quantum number n without 
risk of mistake. 
 
4. The level 2n = N 
It is now clear that the physical states are given in general, 
up to normalization factors, in  
SU (2) by 
 
∏i=1

n(αηi
+†αδi

−†)|0 >=( ∏i=1
n αηi

+† )( ∏i=1
n αδi

−†) |0 >,   ηi , δi 
= ±  ,                (71) 

 
where each of the terms ( ∏i=1

n αηi
+† ):= (I)  and (∏i=1

n 

αδi
−†):=(II) corresponds to the totaly symmetric 

representation of n box in terms of the diagram of Young. 
Thus these (I) × (II) states fall into the following 
representations 
 

                                   �                                         (72) 
 
                  n                                         n 
where, in this tensor product, each representation is 
characterized by the spin 

 t = (1/2)n so that one has finally a partition of the set of 
states whose each value of partition element, for fixed n, 
gives the state of highest weight 
 
(n/2) � (n/2) =  
n � (n − 1) � (n − 2) � · · · � 0 .       (73) 
 
Hence the first highest weight state is characterized by5 n, 
the following by n − 1 and so on, and the last by 0. 
 
Furthermore, for a given n, the dimension of the 
representation is given by 
 
(2n + 1) + (2n − 1) + (2n − 3) + · · · + 1 = 
        = (n + 1)2 ,                                     (74) 
 
which coincides, as one should expect, with the 
degeneracy of the physical states at the excitation level n.  
 
In conclusion, at quantum level N marked by N = 2n, all 
the physical states fall into the totaly symmetric 
representations symbolized by the diagrams of Young 
 
                        +                      + ··· +                +  •   , (75) 
 
         2n                       2n-2                     2n=2     n=0 
        t=n                      t=n-1                     t=1        t=0 
 
that one can distinguish by their quantum number p 
associated to the projection T3 in these representations. 
 
The general model G = [SO(r = 2), d] 
Let us close this paragraph with the general case where 
there is a finitely many, specifically d particles always 
within the framework of the gauge group SO(2). 
 
By generalizing the analysis done for the case d = 2, it is 
obvious that at quantum level N = 2n, all of the physical 
states fall into the representations of SU(d) given by 
 
                                       �                                       ,  (76) 

 
                   n                                         n 
 
 
and since the dimension of each of the terms in the tensor 
product is given by  
 
(1/n!)[d(d + 1) . . . (d + n − 1)] = [ (d − 1 + n)! ] ×  
[(d − 1)!n!]-1 ,          (77) 

                                                 
5   This state, obtained for t = n is accompanied by a set 
of states obtained by successive applications of T−, 
characterized by the same quantum number t but different 
by their quantum number p. 
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then the dimension of the representation given by (76) is 
simply the degeneracy given by 
 
dn =[(d − 1 + n)!]2 × [(d − 1)!n! ]-2.     (78) 
 
It will simply be a matter of reduction of the 
representation given by (76) and to identify at the end the 
different states by their specific quantum numbers in 
SU(d) for each set of the obtained partition. 
 
CONCLUSION 
 
In this paper, we have shown that the global unitary 
dynamical symmetry is the right one for a skillful 
description of a finitely many oscillators in the ordinary 
Euclidean plane. If it’s known through various studies 
devoted to relations between group theory and physics of 
particles that harmonic oscillators symmetries are the 
unitary ones, our study based on one of the simplest 
laboratory model gives an explicit example and shows 
how does it work. It is possible to apply the same 
formalism for the case of the SO(3) gauge group for 
particles moving no more in the plane but in the three 
dimensional space with spherical symmetry, with -- this is 
to be noted -- the help of SU(2) coherent states 
(Avossevou, 2013). 
 
AKNOWLEDGMENTS 
 
This contribution is part of a work that has been done 
with the Belgian CUD financial support. I’m grateful to 
the kindly supervisions of Prof. Jan Govaerts of 
Université Catholique de Louvain (Belgium) and Prof. 
Mahouton N. Hounkonnou of Université d’Abomey-
Calavi (Benin). 
 
REFERENCES 
 
Avossevou, GYH. In preparation. 
 
Govaerts, J. 1991. Hamiltonian Quantization and 
Constrained Dynamics. Ed. Leuven University Press, 
Leuven, Belgium. 
 
Govaerts, J.and Klauder, JR. 1999. Solving Gauge 
Invariant Systems without Gauge Fixing: the Physical 
Projector in 0+1 Dimensional Theories. Ann. Phys. (NY) 
274 :251-288. e-print arXiv:hep-th/9809119. 
 
Klauder, JR. 1997. Coherent State Quantization of 
Constraint Systems. Ann. Phys. (NY). 254:419-453. 
 
Klauder, JR. 1999. Universal procedure for enforcing 
quantum constraints. Nucl. Phys. B 547:397-412. 
 
Klauder, JR. 2001. Quantization of Constrained Systems. 
In : Lect. Notes Phys. Ed. Springer, Berlin, Germany. 

572 :143-182. e-print arXiv:hep-th/0003297. 
 
Slansky, R. 1981. Group Theory for Unified Model 
Building. In : Physics Reports (Review Section of Physics 
Letters). North-Holland Publishing Company, 
Amsterdam, Netherlands. 79(1):1-128. 
 

 
Received : Oct 22, 2012 ; Revised : June 3, 2013 ;  

Accepted : June 4, 2013 
 
 
 


