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ABSTRACT 

 
This theoretical report provides the supplemental theoretical results concerning the propagation of the shear-horizontal 
surface acoustic waves in the transversely isotropic piezoelectromagnetics (magnetoelectroelastic materials) of class 
6mm. In this theory, the pure SH-waves are guided by the free surface of the bulk piezoelectromagnetic material. The 
following mechanical, electrical, and magnetic boundary conditions at the common interface between two continua such 
as a vacuum and the bulk material are employed in this study: the mechanically free surface, continuity of both the 
electrical and magnetic inductions, and continuity of both the electrical and magnetic potentials. Based on the natural 
coupling mechanisms such as εα he −  and 2αεµ −  in the coefficient of the magnetoelectromechanical coupling 
(CMEMC) it is argued that some additional new true solutions for the new surface SH-waves can exist. The existing 
incorrect solutions for this problem are also given and discussed. The obtained theoretical results can be useful for 
constitution of various technical devices based on smart magnetoelectroelastic materials and the further researches on the 
propagation of the interfacial SH-waves and the plate SH-waves in the piezoelectromagnetic (composite) materials.  
PACS: 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.Iv, 68.60.Bs, 74.25.Ld, 74.25.Ha, 75.20.En, 75.80.+q, 81.70.Cv  
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INTRODUCTION  
 
Piezoelectromagnetic materials, also known as the 
magnetoelectroelastic media, simultaneously show 
evidence of the piezoelectric, piezomagnetic, and 
magnetoelectric effects (Nan, 1994; Fiebig, 2005; Wang 
et al., 2007). The properties of such smart materials can 
offer multi-promising opportunities for the creation of 
intelligent structures and smart material technical devices. 
These innovative devices can be capable of responding to 
internal and environmental changes. Piezoelectromagnetic 
(PEM) shear-horizontal surface acoustic waves (SH-
SAWs) can be very useful for analyzing high-frequency 
SH-SAW technical devices. PEM SH-SAWs can be 
readily generated with the well-known non-contact 
method (Ribichini, 2010; Thompson, 1990; Hirao and 
Ogi, 2003) called the electromagnetic acoustic 
transducers (EMATs). The utilization of this non-contact 
method can be preferable in comparison with the other 
traditional method based on the piezoelectric transduction 
(Thompson, 1990; Hirao and Ogi, 2003).  
 
It is well-known that the magnetoelectric (ME) effect in 
the single phase PEM materials such as Cr2O3, LiCoPO4, 
and TbPO4 (Fiebig, 2005) is usually very small. Indeed, 
none of the magnetoelectric materials can have combined 
large and robust electric and magnetic polarizations at 
room temperature. However, the Sr3Co2Fe24O41 Z-type 

hexaferrite (Kimura, 2012) with a hexagonal structure 
was discovered in 2010. It is thought that such single-
phase hexaferrite with the realizable ME effect can be 
already apt for practical applications. Also, two-phase 
PEM composite materials can be exploited in various 
technical devices. Composites possessing the ME effect 
consist of the piezoelectric and piezomagnetic phases. 
The ME coupling in such composites represents a product 
property resulting from the mechanical interaction 
between the piezoelectric and piezomagnetic phases. 
Experimental investigations of the ME effect in the two-
phase composites were originated in the 1970s. In pioneer 
works Van Suchtelen (1972); Van den Boomgaard et al. 
(1974); Van Run et al. (1974); Van den Boomgaard et al. 
(1976), the piezoelectric phase BaTiO3 and piezomagnetic 
phase CoFe2O4 materials were employed to synthesize the 
ME composite such as BaTiO3-CoFe2O4 by a 
unidirectional solidification method. The resulting PEM 
BaTiO3-CoFe2O4 composite can have two orders larger 
value of the ME coefficient than that of the pioneer 
single-phase ME crystal such as Cr2O3 (Liu et al., 2007). 
Annigeri et al. (2006) and Aboudi (2001) provide the 
material characteristics of various BaTiO3-CoFe2O4 
composites of hexagonal class 6 mm. These PEM 
composites relate to the (0-3) connectivity when the three-
dimensional matrix of the piezoelectric phase contains 
zero-dimensional inclusions of the piezomagnetic phase, 
or vice versa. Also, PEM composites can have the (2-2) 
connectivity when a multi-layered (sandwich-like) 
structure is formed. Such PEM laminated composites can *Corresponding author email: aazaaz@inbox.ru 
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be composed of linear homogeneous piezoelectric and 
piezomagnetic layers with a perfect bonding between 
each interface. The investigations of such laminated 
composites are relatively recent (Ramirez et al., 2006) 
and the material parameters of the BaTiO3–CoFe2O4 and 
PZT-5H–Terfenol-D laminated composites can be found 
in reported work (Wang and Mai, 2007; Liu and Chue, 
2006; Zakharenko, 2012a; Wang et al., 2008). The PEM 
laminates can demonstrate significant interactions 
between the elastic, electric, and magnetic fields and have 
direct applications in sensing and actuating devices. There 
is indeed much review work (Fiebig, 2005; Kimura, 2012; 
Özgür et al., 2009; Fiebig et al., 2005; Park and Priya, 
2012; Pullar, 2012; Bichurin et al., 2012; Zakharenko, 
2013a; Chen et al., 2012; Bichurin et al., 2011; 
Srinivasan, 2010; Zhai et al., 2008; Nan et al., 2008; 
Eerenstein et al., 2006; Spaldin and Fiebig, 2005; 
Khomskii, 2006; Cheong and Mostovoy, 2007; Ramesh 
and Spaldin, 2007; Kimura, 2007; Kimura et al., 2003; 
Wang et al., 2009; Ramesh, 2009; Delaney et al., 2009; 
Gopinath et al., 2012; Fert, 2008a; Fert, 2008b; Chappert 
and Kim, 2008; Bibes and Barthélémy, 2008; Prellier et 
al., 2005; Bichurin et al., 2006; Fetisov et al., 2006; 
Srinivasan and Fetisov, 2006; Priya et al., 2007; 
Grossinger et al., 2008; Ahn et al., 2009; Petrov et al., 
2003; Harshe et al., 1993; Chu et al., 2007; Schmid, 
1994; Ryu et al., 2002; Fang et al., 2008; Sihvola, 2007; 
Hill, 2000; Smolenskii and Chupis, 1982) on the ME 
effect, PEM composites, and their applications.  
 
It is thought that the first review work on the propagation 
of the PEM SH-SAWs guide by the free surface is paper 
Zakharenko (2013a). This paper partly reviews some 
achievements of the original theoretical work written by 
Melkumyan (2007) who has discovered several new SH-
waves corresponding to different mechanical, electrical, 
and magnetic boundary conditions. Also, review paper 
Zakharenko (2013a) touches the problems of the PEM 
SH-SAW propagations in the transversely isotropic 
materials (Zakharenko, 2010) and the half-spaces with the 
cubic symmetry (Zakharenko, 2011a). It is necessary to 
state that following book Zakharenko (2010), the 
following section first acquaints the reader with recent 
theoretical achievements concerning the theory of SH-
wave propagation guided by the free surface of the 
transversely isotropic piezoelectromagnetic half-space of 
class 6 mm. This theoretical work relates to the most 
complicated case of the electrical and magnetic boundary 
conditions at the vacuum-solid interface when the 
electrical and magnetic inductions and the electrical and 
magnetic potentials are continued through the interface. 
As a result, this work discusses the corresponding new 
SH-wave discovered in book Zakharenko (2010), 
discovers two additional new SH-waves for the case, and 
explains why the other existing solutions found in papers 
(Wang et al., 2007; Liu et al., 2007) cannot be true for the 
treated case of the boundary conditions mentioned above. 

Thus, the following section starts with the theory of the 
SH-wave propagation based on the book by Zakharenko 
(2010).   
 
Theory of PEM SH-SAWs leading to some new 
solutions  
 
For a PEM medium, acoustic wave propagation coupled 
with both the electrical and magnetic potentials requires 
suitable thermodynamic functions and thermodynamic 
variables. It is convenient to choose the mechanical stress, 
electrical induction (D), and magnetic induction 
(magnetic flux B) as the appropriate thermodynamic 
functions (Zakharenko, 2010; Zakharenko, 2011a; 
Zakharenko, 2012b; Zakharenko, 2012c). As a result, the 
thermodynamic variables for such choice are the 
mechanical strain, electrical field (E), and magnetic field 
(H). In such thermodynamic treatment in the case of 
linear elasticity, all the material constants can be 
thermodynamically determined. The components of the 
electrical field (Ei) and the components of the magnetic 
field (Hi) can be defined by the electrical potential φ and 
magnetic potential ψ, respectively: Ei = – ∂φ/∂xi and Hi = 
– ∂ψ/∂xi, where xi represent the real space components 
and the index i runs from 1 to 3. Utilization of the 
equilibrium equations and the corresponding Maxwell 
equations written in the form of the quasi-static 
approximation (Auld, 1990; Dieulesaint and Royer, 1980) 
can constitute the coupled equations of motion 
representing partial second derivatives. The solutions 
such as the mechanical displacement components Ui, 
electrical potential φ, and magnetic potential ψ for the 
coupled equations of motion can be naturally written in 
the form of plane waves.  
 
Using the plane wave solution for the coupled equations 
of motion written in the differential form, it is possible to 
compose the coupled equations of motion written in the 
tensor form representing the well-known Green-
Christoffel equation (Zakharenko, 2010; Zakharenko, 
2011a; Zakharenko, 2012b; Zakharenko, 2012c). In the 
case of the linear elasticity, the modified Green-
Christoffel tensor with the GLIJ-tensor components is 
symmetric, i.e. GLIJ = GLJI, where the indices I and J run 
from 1 to 5. For that reason, it has only 15 independent 
tensor components. In the common case, the Green-
Christoffel equation representing a polynomial can be 
resolved only numerically. The Green-Christoffel 
equation is the main equation to study acoustic wave 
propagation coupled with both the electrical and magnetic 
potentials. To resolve this equation means to determine 
the eigenvalues and corresponding eigenvectors, where 
the eigenvectors have the following common form 
consisting of five initial amplitudes: 
 ( )00
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However there are high symmetry propagation directions 
(Dieulesaint and Royer, 1980; Lardat et al., 1971) in 
which “pure” waves with the in-lane polarization and 
“pure” waves with the anti-pale polarization (shear-
horizontal polarization) can exist. The main feature of 
such pure waves mentioned in paper (Lardat et al., 1971) 
can be expanded for the case of the wave propagation in 
the piezoelectromagnetics: when the pure waves with the 
anti-plane polarization are coupled with both the electrical 
and magnetic potentials, the pure waves with the in-lane 
polarization represent purely mechanical waves, and vice 
versa. The suitable cuts and propagation directions for 
materials with various symmetry classes are tabulated in 
works (Dieulesaint and Royer, 1980; Lardat et al., 1971). 
It is central to state that each symmetry class has its own 
set of the material constants, for instance, see in books 
cited in Nye (1989), Newnham (2005), Lovett (1999), 
Hammond (2009) and Wooster (1973).  
 
The theoretical work developed below relates to the study 
of propagation of shear-horizontal surface acoustic waves 
(SH-SAWs) in the transversely isotropic 
piezoelectromagnetic materials of symmetry class 6 mm. 
For materials of such symmetry, the suitable propagation 
directions are mentioned in review paper (Gulyaev, 1998) 
and the coordinate system is shown in review paper 
(Zakharenko, 2013a) available on-line with an open 
excess. Using the rectangular coordinate system (x1,x2,x3), 
it is necessary to state that the SH-SAW propagation 
direction, sixfold symmetry axis of the PEM material, and 
the surface normal must be managed along the x1-, x2-, 
and x3-axes, respectively. So, such propagation directions 
can support the coupling of the elastic SH-waves with 
both the electrical and magnetic potentials. For this case, 
the Green-Christoffel equation is simplified and all the 
eigenvalues and the corresponding eigenvectors such as 
( )00

5
00

4
0
2 ,, ψϕ == UUU  can be analytically found. In 

such propagation directions, different sets of the 
mechanical, electrical, and magnetic boundary conditions 
(Melkumyan, 2007; Zakharenko, 2010) can be treated. 
However, this work has the purpose to discover some 
additional new solutions (new SH-SAWs) only for the 
following set of the boundary conditions applied at the 
vacuum-solid interface: the mechanically free surface, 
continuity of both the electrical and magnetic inductions, 
and continuity of both the electrical and magnetic 
potentials. The various boundary conditions for the case 
when a medium simultaneously possesses both the 
piezoelectric and piezomagnetic properties are perfectly 
described in paper Al’shits et al. (1992). The following 
subsection provides the theory following book 
Zakharenko (2010). However, it is believed that the most 
comprehensive theory for the case is given in theoretical 
work (Zakharenko, 2012b) of books (Zakharenko, 2010; 
Zakharenko, 2011a; Zakharenko, 2012b; Zakharenko, 
2012c).  

Theory of SH-wave propagation, eigenvalues, and 
eigenvectors  
In the suitable high symmetry propagation direction 
mentioned above when the SH-wave propagation is 
coupled with both the electrical and magnetic potentials 
there are the following independent nonzero material 
constants: the stiffness constant C, piezomagnetic 
coefficient h, piezoelectric constant e, dielectric 
permittivity coefficient ε, magnetic permeability 
coefficient µ, and electromagnetic constant α. These 
material constants are defined as follows: C = C44 = C66, e 
= e16 = e34, h = h16 = h34, ε = ε11 = ε33, µ = µ11 = µ33, and α 
= α11 = α33 (Zakharenko, 2010). The SH-SAWs are guided 
by the free surface of the transversely isotropic 
piezoelectromagnetics of class 6 mm. The anti-plane 
polarized SH-wave propagates along the x1-axis of the 
rectangular coordinate system (x1,x2,x3) and has the 
mechanical displacement component U = U2 directed 
along the x2-axis. The propagation direction can be 
defined by the directional cosines (n1,n2,n3) respectively 
directed along the corresponding axes (x1,x2,x3). For this 
case, the directional cosines are defined as follows: n1 = 1, 
n2 = 0, and n3 ≡ n3. They are coupled with the components 
(k1,k2,k3) of the wavevector K by the following equality: 
(k1,k2,k3) = k(n1,n2,n3) where k is the wavenumber in the 
propagation direction. All the suitable values of n3 must 
be found and they represent the eigenvalues for the case. 
Using the found eigenvalues, the corresponding 
eigenvector ( )000 ,, ψϕU = ( )0

5
0
4

0
2 ,, UUU  can be also 

determined from the corresponding tensor form of the 
coupled equations of motion.    
 
When the SH-wave propagation is coupled with both the 
electrical potential φ and the magnetic potential ψ, the 
corresponding tensor form of the coupled equations of 
motion can be expressed by three homogeneous equations 
written in the following matrix form:  
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where ρ and Vph are the mass density of the 
piezoelectromagnetic material and the phase velocity, 
respectively. The phase velocity Vph is defined by the 
following relation: Vph = ω/k, where ω is the angular 
frequency.   
 
All the suitable eigenvalues n3 can be determined when 
the determinant of the coefficient matrix in equations (1) 
vanishes. Thus, it is possible to write the following matrix 
determinant:  
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0
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GLGLVGL phρ

 (2) 

 
where the components of the symmetric GL-tensor are 
expressed as follows:  
 

)1( 2
322 nCGL +=     (3) 

)1( 2
344 nGL +−= ε     (4) 

)1( 2
355 nGL +−= µ     (5) 

)1( 2
34224 neGLGL +==    (6) 

)1( 2
35225 nhGLGL +==    (7) 

)1( 2
35445 nGLGL +−== α    (8) 

 
The matrix determinant written above can be rewritten in 
the following convenient form:  
 

( )[ ]
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2
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−−
−−

−
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µα
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h
e

hmemVVmC
mm

tph

 (9) 

 
where m = 1 + n3

2. In equation (9), Vt4 stands for the 
speed of the shear-horizontal bulk acoustic wave (SH-
BAW) uncoupled with both the electrical and magnetic 
potentials. This speed is defined by   
 

ρCVt =4      (10) 
 
It is clearly seen in equation (9) that the left-hand side 
consists of three factors, of which each provides its own 
eigenvalues. So, the first and second factors are the same 
and give the following identical eigenvalues:  
 

j)3(
3

)1(
3 −== nn     (11) 

 
where only eigenvalues with a negative imaginary part are 
left to have wave damping towards depth of the PEM 
material. So, the first and third eigenvalues defined by 
expression (11) are suitable because the second and fourth 
eigenvalues have an opposite sign.  
 
Also, the third factor in equation (9) represents a 
determinant representing a number. The determinant must 
be equal to zero to reveal the third suitable eigenvalue n3. 
Expanding this determinant, the following secular 
equation can be obtained:  
 

( ) ( ) 01 2
4

2 =−+ tphem VVmK    (12) 
 
In equation (12), 2

emK  stands for the coefficient of the 
magnetoelectromechanical coupling (CMEMC). It can be 
calculated with the following formula:  
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It is obvious in equation (13) that the CMEMC can be 
represented as the material parameter depending on the 
following three different coupling mechanisms 
(Zakharenko, 2013b):  
 

αµ he −      (14) 
εα he −      (15) 
2αεµ −      (16) 

 
Consequently, equation (12) provides the following form 
of the third suitable eigenvalue denoted as the fifth 
eigenvalue:  
 

( )2)5(
3 1j temph VVn −−=    (17) 

 
because the sixth eigenvalue has an opposite sign and 
therefore, it is unsuitable for the case. So, the suitable 
three eigenvalues defined by expressions (11) and (17) are 
found. Using them, it is necessary to determine the 
corresponding eigenvectors. In definition (17), the 
velocity denoted by Vtem represents the speed of the SH-
BAW coupled with both the electrical and magnetic 
potentials. It is defined by the following expression:  
 

( ) 2/12
4 1 emttem KVV +=     (18) 

 
Using equations (1), it is also possible to determine the 
eigenvector explicit forms such as ( )000 ,, ψϕU  for all 
three suitable eigenvalues n3 defined by expressions (11) 
and (17). It is natural to use the first equation in 
equations’ set (1) to demonstrate the dependence of the 
eigenvector component U0 on both the components φ0 and 
ψ0. Thus, one has   
 

000 ψϕ
A

hm
A

emU −−=    (20) 

 
Next, dependence (20) is utilized in the second and third 
equations in equations’ set (1) to exclude the eigenvector 
component U0 and to deal with only two equations in two 
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unknowns such as φ0 and ψ0. So, these two equations 
read:  
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where  
 

( )[ ]2
4tph VVmCA −=    (23) 

 
It is worth noting that the used mathematical procedure to 
obtain the eigenvector components such as U0, φ0, and ψ0 
is usual and well-known. Accounting the fact that m = 1 + 
n3

2 = 0 for two eigenvalues (11), it is possible to have the 
following eigenvector components:  
 
( ) ( ) ( )εαψϕψϕ −== ,,0,,,, (3)0(3)0(3)0(1)0(1)0(1)0 UU

  (24) 
 
For eigenvalue (17) with m ≠ 0, the corresponding 
eigenvector components can be written as follows:    
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Also, the following equalities exist and naturally couple 
the corresponding eigenvector components:   
 

εαψϕψϕ hehehe −=+=+ )5(0)5(0)1(0)1(0  (26) 
 
In expression (25), the coefficient of the 
electromechanical coupling (CEMC) is denoted by 2

eK  

and the other parameter denoted by 2
αK  couples only the 

terms with the electromagnetic constant α in CMEMC 
(13). They are respectively defined as follows:  
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Utilizing the eigenvalues and the corresponding 
eigenvectors obtained above, it is possible to compose the 
complete mechanical displacement UΣ, complete 

electrical potential φΣ, and complete magnetic potential 
ψΣ. These parameters can be compactly written in the 
plane wave forms as follows:  
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where F(1), F(3), and F(5) are called the weight factors; t is 
time and j is the imaginary unity, j = (– 1)1/2. These 
weight factors must be found when the boundary 
conditions are applied. The mechanical, electrical, and 
magnetic boundary conditions are perfectly described in 
paper (Al’shits et al., 1992) for the case of wave 
propagation in piezoelectromagnetics. The mechanical, 
electrical, and magnetic boundary conditions used in the 
study of this paper were mentioned above, namely before 
this subsection in the beginning of this section.  
 
At the interface between the piezoelectromagnetic 
medium and a vacuum, the mechanically free surface 
requires that the normal component of the stress tensor 
must vanish, namely σ32 = 0. Therefore, the mechanical 
boundary condition can be expressed as follows:  
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where F1 = F(1), F2 = F(3), and F3 = F(5).  
The electrical boundary condition such as continuity of 
the electrical displacement normal component D3 at the 
solid-vacuum interface is written as follows: D3 = Df, 
where Df denotes the electrical induction of a vacuum. 
The component D3 is expressed by  
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The vacuum electrical induction Df depends on the 
electrical weight factor FE as follows:  
 

010 j εϕ kFD f
E

f −=     (34) 

The second electrical boundary condition requires 
continuity of the electrical potential φ at the interface, i.e. 
φ = φ f where  
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The electrical potential φ f in a vacuum is  
 

f
E

f F 0ϕϕ =      (36) 
 
It is also possible to discuss two magnetic boundary 
conditions at the solid-vacuum interface. The first 
magnetic boundary condition represents continuity of the 
magnetic flux normal component B3: B3 = Bf, where   
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The vacuum magnetic flux Bf depends on the magnetic 
weight factor FM as follows:  
 

010 j µψ kFB f
M

f −=     (38) 
 
The second magnetic boundary condition requires 
continuity of the magnetic potential ψ at the interface, i.e. 
ψ = ψ f, where  
 

)5(0
3

)3(0
2

)1(0
1 ψψψψ FFF ++=   (39) 

 
The magnetic potential ψ f in a vacuum reads:  
 

f
M

f F 0ψψ =      (40) 
 
To clarify the vacuum parameters, it is necessary to state 
that the elastic constant C0 of a vacuum is thirteen orders 
smaller than that for a solid: C0 = 0.001 Pa (Kiang and 
Tong, 2010). For that reason, it is too negligible to 
account it in calculations. Also, the vacuum dielectric 
permittivity constant is ε0 = 10–7/(4πCL

2) = 
8.854187817×10–12 [F/m] where CL = 2.99782458×108 
[m/s] is the speed of light in a vacuum. The vacuum 
magnetic permeability constant is µ0 = 4π×10–7 [H/m] = 
12.5663706144×10–7 [H/m]. The constant ε0 is the 
proportionality coefficient between the vacuum electric 
induction Df and the vacuum electric field Ef: Df = ε0Ef, 
where the electric field components can be defined as 
follows: Ef

i = – ∂φf/xi. Therefore, the Laplace equation of 
type ∆φf = 0 can be written for the electrical potential in a 
vacuum. Similarly, the constant µ0 is the proportionality 
coefficient between the vacuum magnetic induction Bf 
and the vacuum magnetic field Hf: Bf = µ0Hf, where the 
magnetic field components can be defined as follows: Hf

i 
= – ∂ψf/xi. Thus, Laplace’s equation of type ∆ψf = 0 can 
be used for the magnetic potential in a vacuum. It is 

required that both the electrical and magnetic potentials 
must exponentially vanish in a vacuum far from the free 
surface of the piezoelectromagnetic material.   
 
Based on the equations corresponding to the mechanical, 
electrical, and magnetic boundary conditions written 
above, one can consequently compose the following 
matrix form of three homogeneous equations:  
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(41) 
 
where the corresponding n3 are used instead of k3 = kn3; k1 
= kn1 where n1 = 1.  
 
It is necessary to state that equations (41) already include 
the vacuum material parameters such as ε0 and µ0. It is 
clearly seen that equations (41) represent three 
homogeneous equations in three unknowns representing 
the weight factors F1, F2, and F3. In equations (41), the 
vacuum weight factors FE and FM are naturally excluded, 
see the boundary conditions written above. Therefore, it is 
possible to say that one deals here with three-partial SH-
wave propagation (instead of five-partial SH-wave) 
guided by the free surface of piezoelectromagnetics. This 
is similar to the SH-wave propagation in pure 
piezoelectrics (Auld, 1990; Dieulesaint and Royer, 1980; 
Lardat et al., 1971; Farnell and Adler, 1972; Farnell, 
1978) where two-partial SH-wave (instead of three-
partial) propagates because the vacuum weight factor FE 
can be excluded.    
 
To simplify equation (41), it is natural to use equations 
(11), (17), (24) and (25). Indeed, it is possible to exploit 
the following equalities that significantly simplify 
equation (41):  
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The utilization of equalities from (42) to (47) and 
eigenvalues (11) and (17) in the matrix form of three 
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homogeneous equations (41) allows one to rewrite them 
as the following three equations:  
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Comparing three homogeneous equations written in 
matrix form (41) with their reduced forms obtained in 
equations from (48) to (50), it is possible to write down 
the determinant of the coefficient matrix in equations (41) 
in the following reduced form:  
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Matrix determinant (51) is called the determinant of the 
boundary conditions. It is clearly seen that there are two 
factors such as α and (eα – hε) written before the 
determinant. The first and second factors came from 
equations (49) and (48), respectively. According to the 
well-known rules to work with rows and columns of a 
determinant, it is natural to write both the common factor 
for the first row of determinant (51) such as α and that for 
the second row such as (eα – hε) outside determinant (51) 
for simplicity. This changes nothing. Also, it is possible to 
do the same for the common factor of the third column of 
determinant (51) such as 21 emK . However, it was not 
done in equation (51) because it changes nothing and the 
reader can easily do it. So, the expansion of matrix 
determinant (51) leads to the following secular equation:   
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As a general rule, secular equation (52) must vanish only 
for some certain value of the phase velocity Vph. This 
certain velocity Vph represents the speed of new SH-wave 
propagating in the transversely isotropic 
piezoelectromagnetic material of class 6 mm. However, it 
is clearly seen in equation (52) that equality (52) is valid 

for any value of the velocity Vph because the first and 
second columns of determinant (51) are identical. So, it is 
possible to state that there is the uncertainty that 
represents a peculiarly of finding of suitable speed of new 
SH-SAW. The suitable SH-SAW speed must indeed 
satisfy the following inequality: 0 < Vph < Vtem. However, 
this uncertainty can be resolved below.   
 
Using F = F1 + F2, it is possible to rewrite equations from 
(48) to (50) as follows:  
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It is apparent that equations from (48) to (50) are identical 
to equations from (53) to (55) due to F = F1 + F2. 
However, equations from (53) to (55) have one very 
important peculiarity: there is already no uncertainty of 
the phase velocity Vph for these equations because they 
represent three homogeneous equations in two unknown 
weight factors such as F and F3. Indeed, it is well-known 
that three equations from (53) to (55) can be consistent 
with each other when one equation represents a sum of 
two others. This is the condition to determine the weight 
factors F and F3. So, the following subsection acquaints 
the reader with already found natural solution 
representing the new SH-SAW discovered in book by 
Zakharenko (2010). However, the main purpose of this 
theoretical work is to additionally discover some new SH-
SAWs. Finally, some incorrect solutions recently found in 
papers (Wang et al., 2007; Liu et al., 2007) also discussed 
in the last of this section.   
 
 
Already discovered new SH-wave (Zakharenko, 2010; 
Zakharenko, 2011b; Zakharenko, 2013a).  
 
It is clearly seen in the first term of equation (55) that the 
factor at F such as [ε(µ + µ0) – α2] can be interpreted as 
coupling mechanism (16) of CMEMC (13) such as [εµ – 
α2] and there is also the coupling with the vacuum 
parameter µ0. Therefore, it is possible to treat coupling 
mechanism (16) in this subsection. For this purpose, it is 
natural to multiply equation (48) by ε(µ + µ0)/(eα – hε) 
and to multiply equation (49) by – α. As a result, three 
equations from (53) to (55) can be rewritten in the 
following forms:  
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It is flagrant that equations from (56) to (58) are 
consistent with each other because the left-hand side of 
equation (58) can become equal to zero as soon as 
equations (56) and (57) are successively subtracted from 
equation (58). Also, homogeneous equations (56) and 
(57) can be transformed into the same equation. 
Therefore, equation (56) can be transformed by the 
following way:   
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The initial equation in equalities (59) demonstrates that 
zero can be added to the left-hand side of equation (56) 
and as a result, nothing is changed. However, this zero 
can be written as (α2F – α2F) = 0. Then, it is demonstrated 
that the terms such as (– α2F) and (α2F) can be grouped 
with the first and last terms, respectively, and the term 
with F3 borrowed from equation (57) can be finally 
written instead of (α2F).  
 
Using equation (56), similar transformations can be 
carried out for equation (57) as follows:  
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So, transformations (59) and (60) have solidly 
demonstrated that equations (56) and (57) can be readily 
transformed into the same equation: see the final 
expressions in transformations (59) and (60). Therefore, 
the following two equations in two unknowns can be 

written instead of three equations from (56) and (57) in 
two unknowns:  
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Equations (61) and (62) represent already a convenient 
form to determine the SH-SAW speed and the unknown 
weight factors F and F3. To determine the SH-SAW 
velocity, it is necessary to subtract equation (61) from 
equation (62), or vice versa. It is thought that it is 
convenient to determine F and F3 from equation (62), 
where F3 represents the coefficient at F with an opposite 
sign and F represents the coefficient at F3. Also, the 
velocity of the new SH-SAW recently discovered in book 
by Zakharenko, 2010 (see the new SH-SAW velocity 
denoted by Vnew1 and defined by equation (108) in the 
book) can be written in the following explicit form:  
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It is clearly seen in expression (63) that the velocity Vnew1 
depends on the speed of light in a vacuum defined by  
 

00

2 1
µε

=LC      (64) 

 
The velocity Vnew1 represents one of seven new SH-SAWs 
recently discovered in book by Zakharenko, 2010. This 
new SH-SAW can propagate along the free surface of the 
transversely isotropic piezoelectromagnetics of class 6 
mm. Also, it is natural to demonstrate that when the 
piezoelectric constant e = 0 and the electromagnetic 
constant α = 0, the PEM SH-SAW defined by expression 
(63) reduces to the well-known velocity VBGpm of the 
surface Bleustein-Gulyaev waves (Bleustein, 1968; 
Gulyaev, 1969) propagating in a pure piezomagnetics.    
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where Vtm and Km

2 stand for the SH-BAW velocity 
coupled with the magnetic potential and coefficient of the 
magnetomechanical coupling (CMMC), respectively. 
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These very important material characteristics of a pure 
piezomagnetics are defined by the following expressions:   
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In expression (66), the velocity Vt4 is defined by 
expression (10).  
 
The following subsection shows two additions new 
solutions representing two new SH-SAWs that can exist 
for the boundary conditions studied in this work. The first 
additional solution also corresponds to coupling 
mechanism (16) of CMEMC (13) such as (εµ – α2) and 
the second corresponds to coupling mechanism (15) of 
CMEMC (13) such as (eα – hε).  
 
 
The discovery of the additional new PEM SH-waves  
 
Similar to the theory developed above for the SH-wave 
propagation in the piezoelectromagnetics, in this 
subsection the following mechanical, electrical, and 
magnetic boundary conditions must be satisfied at the 
vacuum-solid interface: σ32 = 0, φ = φf, D = Df, ψ = ψf, and 
B = Bf. Like the developments carried out in the previous 
subsection, it is also possible to start with the analysis of 
three homogeneous equations from (53) to (55). It is 
necessary to state that this subsection treats the second 
possibility for coupling mechanism (16) of CMEMC (13) 
such as [εµ – α2] when there is the coupling with the 
vacuum parameter µ0. Therefore, equation (55) with the 
factor at F such as [ε(µ + µ0) – α2] is the main equation for 
this case. This main equation must couple equations (53) 
and (54) together forming a system of three homogeneous 
equations in two unknown weight factors F and F3. In 
order that these three equations become consistent with 
each other, it is natural to multiply equation (48) by (εµ – 
α2)/(eα – hε) and to multiply equation (49) by εµ0/α. So, 
three equations from (53) to (55) have the following final 
forms:    
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It is blatant that equations (68) and (69) can be 
transformed in the similar manner used for the 
transformation of equations (56) and (57) carried out in 
the previous subsection. These transformations lead to the 
system of two equations in two unknowns instead of three 
equations in two unknowns. Indeed, it is convenient to 
deal with two equations in two unknowns. These 
transformations correspond to a sum of equations (68) and 
(69) resulting in a single equation. Thus, the resulting 
system of two equations reads:   
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where the weight factors F and F3 can be determined from 
equation (72).  
 
The velocity Vnew8 of the new SH-wave is therefore 
obtained by a subtraction of equation (72) from equation 
(71), or vice versa. Also, the velocity Vnew8 can be 
obtained by a successive subtraction of equations (68) and 
(69) from equation (70). Thus, the value of the new SH-
wave velocity Vnew8 can be evaluated with the following 
formula:  
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It is worth noting that the obtained explicit form of the 
new SH-wave velocity Vnew8 given by expression (73) 
represents the discovery of this theoretical work. Indeed, 
one can find that solution (73) was not treated in book by 
Zakharenko (2010). This is so because the author of book 
(Zakharenko, 2010) has treated the SH-wave propagation 
in PEM plates (Zakharenko, 2012b) and the research of 
book by Zakharenko (2012b) allows the author to assume 
that solution (73) for plate SH-wave propagation is more 
preferable and convenient than solution (63). Also, it is 
clearly seen that solution (73) looks like simple one in 
comparison with solution (63). However, solution (73) 
has a very interesting peculiarity such as the new SH-
SAW defined by expression (73) cannot exist for small 
values of the electromagnetic constant α because 

( ) ∞→→ 02 ααK  occurs. It is obvious that the 
expression under the square root in formula (73) should 
have a positive sign in order to deal with real SH-SAW 
velocity. This peculiarity is absent for solution (63) that 
can exist for very small values of the electromagnetic 
constant α, even for α = 0.  
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In addition, it is possible to consider the second case that 
also leads to discovery of new SH-SAW. The author of 
book by Zakharenko (2012c) has studied the interfacial 
SH-wave propagation guided by the common interface 
between two dissimilar piezoelectromagnetics. One can 
find in book by Zakharenko (2012c) that coupling 
mechanisms (14) and (15) of CMEMC (13) such as (eµ – 
hα) and (eα – hε) can play the main role. Therefore, it is 
also possible in this subsection to treat coupling 
mechanism (15) such as (eα – hε) for the case of the SH-
SAW propagation guided by the free surface of 
piezoelectromagnetics of class 6 mm. For this purpose, it 
is necessary to treat equation (48) as the main equation 
that couples equations (49) and (50) in a system of three 
homogeneous equations. It is blatant that these three 
equations and therefore, three equations from (53) to (55) 
can be consistent with each other when equation (53) 
represents a sum of equations (54) and (55). To get the 
consistent case, it is necessary to multiply equation (54) 
by the piezoelectric constant e because it already has the 
factor such as the electromagnetic constant α and to 
multiply equation (54) by – hε/[ε(µ + µ0) – α2]. As a 
result, three equations from (53) to (55) can be rewritten 
in the following dependable forms:  
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Similar to the transformations carried out in the previous 
subsection, the system of three equations from (74) to 
(76) can be written as a system of two corresponding 
equations. Indeed, a sum of equations (75) and (76) gives 
the second suitable equation. As a consequence, two final 
homogeneous equations read:  
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These equations result in the following quite complicated 
form for the velocity Vnew9 of the ninth new SH-SAW:  
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For the case of a very small value of the electromagnetic 
constant α, α → 0, explicit form (79) reduces to the 
following expression:   
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because  
 

( ) 222 0 meem KKK +→→α    (81) 

( ) 2/122
40 1 mettem KKVV ++=    (82) 

 
It is clearly seen in expression (80) that it reduces to 
expression (65) for the velocity VBGpm of the surface 
Bleustein-Gulyaev waves (Bleustein, 1968; Gulyaev, 
1969) propagating in a pure piezomagnetics as soon as the 
piezoelectric constant e vanishes.    
 
So, it is possible to conclude that the consideration of 
coupling mechanism (15) of CMEMC (13) such as (eα – 
hε) results in the new SH-SAW propagating with the 
velocity Vnew9 defined by formula (79). It is noted that 
coupling mechanisms (14) of CMEMC (13) such as (eµ – 
hα) is also possible and will be researched in the future. 
Solutions (63), (73), and (79) are based on the natural 
coupling mechanisms of the CMEMC and therefore, are 
true. However there are also some incorrect solutions for 
the problem of SH-wave propagation guided by the free 
surface of piezoelectromagnetics. To discuss them is the 
main purpose of the following subsection.   
 
 
The existing incorrect solutions (Wang et al., 2007; Liu et 
al., 2007; Zakharenko, 2013a)  
 
Review paper by Zakharenko (2013a) has mentioned 
some incorrect solutions (Wang et al., 2007; Liu et al., 
2007) for the problem of SH-wave propagation guided by 
the free surface of a PEM material of class 6 mm when the 
following mechanical, electrical, and magnetic boundary 
conditions must be satisfied at the interface between a 
vacuum and the PEM medium: σ32 = 0, φ = φf, D = Df, ψ = 
ψf, and B = Bf, where the superscript “f” is for a vacuum. 
It is possible to concisely develop the discussions of paper 
by Zakharenko (2013a) concerning the incorrect results 
obtained in papers (Wang et al., 2007; Liu et al., 2007).  
 
The authors of theoretical works (Wang et al., 2007; Liu 
et al., 2007) have used the other theoretical methods 
leading to the following solutions that are different from 
true solutions given above by formulae (63), (73), and 
(79):  
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In expression (83), one can find that paper (Wang et al., 
2007) provides δ = 0 in the denominator and paper (Liu et 
al., 2007) offers δ = α2/(εµ). So, it is necessary here to 
state that their incorrect results also differ from each 
other. Review paper by Zakharenko (2013a) has 
demonstrated that expression (83) is incorrect because it 
looks like it was obtained by mixing two different 
eigenvectors. In addition to the conclusion done in 
(Zakharenko, 2013a), it is possible also to state that the 
authors of papers (Wang et al., 2007; Liu et al., 2007) did 
not demonstrate that they have found suitable 
eigenvectors. It is worth noting that to find all the suitable 
eigenvalues and the corresponding eigenvectors is the 
main mathematical procedure to resolve the coupled 
equations of motion. Therefore, papers (Wang et al., 
2007; Liu et al., 2007) did not demonstrate any solutions 
for the coupled equations of motion. This means that this 
fact allows one to make a statement that two incorrect 
solutions given by expression (83) looks like fake 
solutions.   
 
CONCLUSION  
 
This research work acquaints the reader with the new 
possible solutions for the problem of the propagation of 
new SH-SAWs guided by the free surface of the 
transversely isotropic piezoelectromagnetic (composite) 
materials of class 6 mm. These new solutions 
corresponding to the new SH-SAWs naturally came from 
the analysis of the possible coupling mechanisms in the 
coefficient of the magnetoelectromechanical coupling 
(CMEMC). It is also discussed the other incorrect 
solutions recently obtained in the theoretical works 
(Wang et al., 2007; Liu et al., 2007). The results obtained 
in this paper can be useful for experimental investigations 
of the SH-wave propagation in bulk piezoelectromagnetic 
homogeneous samples, piezoelectromagnetic plates, and 
layered structures consisting of dissimilar materials. It is 
apparent that the obtained results can be also useful for 
the constitution of various technical devices and correct 
theoretical descriptions of patent applications.   
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