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ABSTRACT 

 
Time series analysis of Nigerian Inflation Rates (INFL) Data is done. It is observed that it is seasonal. A multiplicative 
seasonal autoregressive integrated moving average (ARIMA) model, (0, 1, 1)x(0, 1, 1)12,  is fitted to the series. The 
model is shown to be adequate and forecasts are obtained on the basis of the model. 
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INTRODUCTION 
 
A time series is defined as a set of data collected 
sequentially in time. It has the property that neighbouring 
values are correlated. This tendency is called 
autocorrelation. A time series is said to be stationary if it 
has a constant mean and variance. Moreover the 
autocorrelation is a function of the lag separating the 
correlated values and called the autocorrelation  function  
(ACF).    
 
A stationary time series {Xt} is said to follow an 
autoregressive moving average model of orders p and q 
(designated ARMA(p,q) ) if it satisfies the following 
difference equation 

=++++ −−− ptpttt XXXX ααα ...2211  (1) 

qtqttt −−− ++++ εβεβεβε ...2211  
or 
Α  (B)Xt = Β (B)εt (2)  
where {εt} is a sequence of random variables with zero 
mean and constant variance, called a white noise process, 
and the αi’s and βj’s constants; Α (B) = 1 + α1B + α2B2 + 
... + αpBp and Β (B) = 1 + β1B + β2B2 + ... + βqBq and B 
is the backward shift operator defined by BkXt = Xt-k.  
 
If p=0, model (1) becomes a moving average model of 
order q (designated MA(q)). If, however, q=0 it becomes 
an autoregressive process of order p (designated AR(p)). 
An AR(p) model of order p may be defined as a model 
whereby a current value of the time series Xt depends on 
the immediate past p values: Xt-1, Xt-2, ..., Xt-p . On the 
other hand an MA(q)  model of order q is such that the 
current value Xt is a linear combination of immediate past 

values of the white noise process: εt-1, εt-2, ..., εt-q. Apart 
from stationarity, invertibility is another important 
requirement for a time series. It refers to the property 
whereby the covariance structure of the series is unique 
(Priestley, 1981). Moreover it allows for  meaningful 
association of current events with the past history of the 
series (Box and Jenkins, 1976). 
 
An AR(p) model may be more specifically written as Xt + 
αp1Xt-1 + αp2Xt-2 + ... + αppXt-p = εt Then the sequence of 
the last coefficients{αii} is called the partial 
autocorrelation function(PACF) of {Xt}. The  ACF of an 
MA(q) model cuts off after lag q whereas that of an 
AR(p) model is a combination of sinusoidals dying off 
slowly. On the other hand the PACF of an MA(q) model 
dies  off slowly whereas that of an AR(p)  model cuts off 
after lag p. AR and MA models are known to have some 
duality properties. These include: 
1. A finite order AR model is equivalent to an infinite 

order MA model. 
2. A finite order MA model is equivalent to an infinite 

order AR model. 
3. The ACF of an AR model exhibits the same 

behaviour as the PACF of an MA model. 
4. The PACF of an AR model exhibits the same 

behaviour as the ACF of an MA model. 
5. An AR model is always invertible but is stationary if 

Α (B) = 0 has zeros outside the unit circle. 
6. An MA model is always stationary but is invertible if 

Β (B) = 0 has zeros outside the unit circle. 
 
Parametric parsimony consideration in model building 
entails preference for the mixed ARMA fit to either the 
pure AR or the pure MA fit. Stationarity and invertibility 
conditions for model (1) or (2) are that the equations 
Α (B) = 0 and Β (B) = 0 should have roots outside the 
unit circle respectively. *Corresponding author email:  abuchendu@yahoo.com  
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Often, in practice, a time series is non-stationary. Box and 
Jenkins (1976) proposed that differencing of an 
appropriate order could render a non-stationary series 
{Xt} stationary.  
 
Let degree of differencing necessary for stationarity be d.  
Such a series {Xt} may be modelled as  
 (1 + )∇dXt = Β (B)εt  (3) 

where ∇ = 1 – B and in which case Α (B) =  
 = 0 shall have unit roots d times. 

Then differencing to degree d renders the series 
stationary. The model (3) is said to be an autoregressive 
integrated  moving average model of orders p, d and q and 
designated ARIMA(p, d, q).  
 
Seasonal ARIMA Models:   
A time series is said to be seasonal of order d if there 
exists a tendency for the series to exhibit periodic 
behaviour after every time interval d. Traditional time 
series methods involve the identification , unscrambling 
and estimation of the traditional components: secular 
trend, seasonal component, cyclical component and the 
irregular movement. For forecasting purpose, they are 
reintegrated. Such techniques could be quite misleading.  
 
The time series {Xt} is said to follow a multiplicative (p, 
d, q)x(P, D, Q)s seasonal ARIMA model if 

 t
s

t
D
s

ds BBXBB ε)()()()( ΘΒ=∇∇ΦΑ    (4) 

where Φ and Θ are polynomials of order P and Q 
respectively. That is, 

,...1)( 1
sP

P
ss BBB φφ +++=Φ                 (5) 

,...1)( 1
sQ

Q
ss BBB θθ +++=Θ                            (6) 

where the  iφ and jθ are constants such that the zeros of 
the equations (5) and (6) are all outside the unit circle for 
stationarity and invertibility respectively. Equation (5) 
represents the autoregressive operator whereas (6) 
represents the moving average operator.  
 
Existence of a seasonal nature is often evident from the 
time plot. Moreover for a seasonal series the ACF or 
correlogram exhibits a spike at the seasonal  lag. Box and 
Jenkins (1976) and Madsen (2008) are a few authors that 
have written extensively on such models. A knowledge of 
the theoretical properties of the models provides basis for 
their identification and estimation. The purpose of this 
paper is to fit a seasonal ARIMA model to Nigerian 
Inflation Rate (INFL) series. 
 
MATERIALS AND METHODS 
 
The data for this work are inflation rates – All items (Year 
on Change)- from 2003 to 2011 obtainable from the Data 

and Statistics publication of Central Bank of Nigeria 
retrievable from the website http://www.cenbank.org/.  
 
Determination of the orders d, D, p, P, q and Q: 
Seasonal differencing is necessary to remove the seasonal 
trend. If there is secular trend non-seasonal differencing 
will be necessary. To avoid undue model complexity it 
has been advised that orders of differencing d and D 
should add up to at most 2 (i.e. d + D < 3). If the ACF of 
the differenced series has a positive spike at the seasonal 
lag then a seasonal AR component is suggestive; if it has 
a negative spike then a seasonal MA term is suggestive.  
 
As already mentioned above, an AR(p) model has a 
PACF that truncates at lag p and an MA(q)) has an ACF 
that truncates at lag q. In practice  where n is the 
sample size are the non-significance limits for both 
functions.   
 
Model Estimation 
The involvement of the white noise terms in an ARIMA 
model entails a nonlinear iterative process in the 
estimation of the parameters.  An optimization criterion 
like least error of sum of squares, maximum likelihood or 
maximum entropy is used. An initial estimate is usually 
used. Each iteration is expected to be an improvement of 
the last one until the estimate converges to an optimal 
one. However, for pure AR and pure MA models linear 
optimization techniques exist [See for example Box and 
Jenkins (1976), Oyetunji (1985)].    
 
There are attempts to adopt linear methods to estimate 
ARMA models [See for example, Etuk (1987, 1996)]. We 
shall use Eviews software which employs the least 
squares approach involving nonlinear iterative techniques. 
 
Diagnostic Checking 
The model that is fitted to the data should be tested for 
goodness-of-fit. We shall do some analysis of the 
residuals of the model. If the model is correct, the 
residuals would be uncorrelated and would follow a 
normal distribution with mean zero and constant variance.   
 
The autocorrelations of the residuals should not be 
significantly different from zero. 
 
RESULTS AND DISCUSSION 
 
The time plot of the original series INFL in figure1 shows 
no clear secular trend nor seasonality. Seasonal (i.e. 12-
month) differencing of the series produces a series 
SDINFL also with no trend nor clear seasonality (see Fig. 
2). Non-seasonal differencing yields a series DSDINFL 
with no trend and no clear seasonality (see Fig. 3). Its 
ACF in figure 4 has a negative spike at lag 12 revealing a 
seasonality of  lag 12  and  a seasonal  MA  component to  
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Table 1. Model Estimation.     

 
Table 2. Forecasts.     

Time Residuals DSDINFL SDINFL INFL 
December 2010 
January 2011 
February 2011 
March 2011 
April 2011 
May 2011 
June 2011 
July 2011 
August 2011 
September 2011 
October 2011 
November 2011 
December 2011 

-1.87861 
0.48996 
-1.73901 
2.18770 
-1.39480 
1.82048 
-2.49961 
-0.00673 
-0.19715 
1.44585 
-0.91003 
0.38172 
-0.41409 

-2.5 
-0.2 
-2.2 
2.5 
-1.7 
3.2 
-3.4 
0.3 
-0.8 
1.1 
0.4 
0.6 
0.8 

-2.1 
-2.3 
-4.5 
-2.0 
-3.7 
-0.5 
-3.9 
-3.6 
-4.4 
-3.3 
-2.9 
-2.3 
-1.5 

11.8 
12.1 
11.1 
12.8 
11.3 
12.4 
10.2 
9.4 
9.3 

10.3 
10.5 
10.5 
10.3 

January 2012 
February 2012 
March 2012 
April 2012 
May 2012 
June 2012 
July 2012 August 2012 
September 2012 
October 2012 November 2012 
December 2012 

 -0.536 
1.153 
-1.538 
1.064 
-1.276 
1.745 
-0.189 
0.126 
-0.943 
0.696 
-0.315 
0.295 

-2.04 
-0.89 
-2.43 
-1.37 
-2.64 
-0.90 
-1.09 
-0.96 
-1.90 
-1.20 
-1.52 
-1.22 

10.1 
10.2 
10.4 
9.9 
9.8 
9.3 
8.3 
8.3 
8.4 
9.3 
9.0 
9.1 
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Fig. 1. INFL. 

 
Fig. 2. SDINFL. 
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Fig. 3. DSDINFL. 

 
Fig. 4. Correlogram of DSDINFL. 
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Fig.  5. Histogram of Residuals.  

 
 
Fig. 6. Correlogram of Residuals.  
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the model. The PACF shows no spike in the early lags (1, 
2, 3, ...) suggesting a non-seasonal MA component.  We 
therefore propose a (0, 1, 1)x(0, 1, 1)12 seasonal model.  
 
That means DSDINFLt = β1εt-1 + β12 εt-12  
+ β13εt-13 + εt (7) 
 
The estimation of the model is summarized in table 
1. The fitted model is given by DSDINFLt -
0.184619εt-1 + 0.641404εt-12 -0.077588εt-13 = εt (8) 
(±0.077003)     (±0.057709)    (±0.088573) 
                                                                                                                                                                                                                               
The estimation involved 11 iterations. Clearly only β13 is 
not significantly different from zero, being lesser than 
twice its standard error. The histogram of the residuals in 
figure 5 shows that the residuals are normally distributed 
with zero mean indicating model adequacy.  
 
Moreover the correlogram of the residuals in figure 6 
depicts the adequacy of the model. Virtually all the 
residual autocorrelations are not significantly different 
from zero. 
 
FORECASTING: 
For the model (7) at time t+k we have 
Xt+k = β1εt+k-1 + β12εt+k-12 + β13εt+k-13 
 
Obtaining conditional expectations given the series up to 
time t, we have 

tttttX εεβεβεβ +++= −− 121311121)1(ˆ   

13131212)(ˆ
−+−+ += ktktt kX εβεβ , k ≥ 2, 3, ..., 12 

where )(ˆ kX t is the k-step ahead forecast from time t. 
 
CONCLUSION  
 
The INFL series has been shown to follow a (0, 1, 1)x(0, 
1, 1)12 model. This model has been shown to be adequate. 
On the basis of the model 2012 forecasts have been 
obtained.   
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