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ABSTRACT

Time series analysis of Nigerian Inflation Rates (INFL) Data is done. It is observed that it is seasonal. A multiplicative
seasonal autoregressive integrated moving average (ARIMA) model, (0, 1, 1)x(0, 1, 1), is fitted to the series. The
model is shown to be adequate and forecasts are obtained on the basis of the model.
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INTRODUCTION

A time series is defined as a set of data collected
sequentially in time. It has the property that neighbouring
values are correlated. This tendency is called
autocorrelation. A time series is said to be stationary if it
has a constant mean and variance. Moreover the
autocorrelation is a function of the lag separating the
correlated values and called the autocorrelation function
(ACF).

A stationary time series {X} is said to follow an
autoregressive moving average model of orders p and g
(designated ARMA(p,q) ) if it satisfies the following
difference equation

Xt X g+, X ,++a, X = 1
e+ Pt B, et /qut—q

or

A (B)X:= B (B)e 2)

where {&} is a sequence of random variables with zero
mean and constant variance, called a white noise process,
and the o;’s and B;’s constants; A (B) = 1 + oyB + a,,B +
..+ 0o,B”and B(B)=1+8,B+p,B*+... + B,B%and B
is the backward shift operator defined by B*X, = Xix.

If p=0, model (1) becomes a moving average model of
order q (designated MA(q)). If, however, g=0 it becomes
an autoregressive process of order p (designated AR(p)).
An AR(p) model of order p may be defined as a model
whereby a current value of the time series X; depends on
the immediate past p values: X.1, Xz, ..., Xip - On the
other hand an MA(q) model of order g is such that the
current value X; is a linear combination of immediate past
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values of the white noise process: &1, €2, ..., &q- Apart
from stationarity, invertibility is another important
requirement for a time series. It refers to the property
whereby the covariance structure of the series is unique
(Priestley, 1981). Moreover it allows for meaningful
association of current events with the past history of the
series (Box and Jenkins, 1976).

An AR(p) model may be more specifically written as X; +

Op1Xe1 + 0peXiz + ... + appXep = & Then the sequence of

the last coefficients{a;} is called the partial

autocorrelation function(PACF) of {X;}. The ACF of an

MA(g) model cuts off after lag q whereas that of an

AR(p) model is a combination of sinusoidals dying off

slowly. On the other hand the PACF of an MA(q) model

dies off slowly whereas that of an AR(p) model cuts off

after lag p. AR and MA models are known to have some

duality properties. These include:

1. A finite order AR model is equivalent to an infinite
order MA model.

2. A finite order MA model is equivalent to an infinite
order AR model.

3. The ACF of an AR model exhibits the same
behaviour as the PACF of an MA model.

4. The PACF of an AR model exhibits the same
behaviour as the ACF of an MA model.

5. An AR model is always invertible but is stationary if
A (B) = 0 has zeros outside the unit circle.

6. An MA model is always stationary but is invertible if
B (B) = 0 has zeros outside the unit circle.

Parametric parsimony consideration in model building
entails preference for the mixed ARMA fit to either the
pure AR or the pure MA fit. Stationarity and invertibility
conditions for model (1) or (2) are that the equations
A (B) =0 and B (B) = 0 should have roots outside the
unit circle respectively.
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Often, in practice, a time series is non-stationary. Box and
Jenkins (1976) proposed that differencing of an
appropriate order could render a non-stationary series
{X} stationary.

Let degree of differencing necessary for stationarity be d.
Such a series {X} may be modelled as

@+ X7, a.BYW = B (B)x ?3)

where V.= 1 - B and in which case A (B) =
(1+ Z7_, @, B*)V = 0 shall have unit roots d times.
Then differencing to degree d renders the series
stationary. The model (3) is said to be an autoregressive

integrated moving average model of orders p, d and q and
designated ARIMA(p, d, ).

Seasonal ARIMA Models:

A time series is said to be seasonal of order d if there
exists a tendency for the series to exhibit periodic
behaviour after every time interval d. Traditional time
series methods involve the identification , unscrambling
and estimation of the traditional components: secular
trend, seasonal component, cyclical component and the
irregular movement. For forecasting purpose, they are
reintegrated. Such techniques could be quite misleading.

The time series {X} is said to follow a multiplicative (p,
d, q)x(P, D, Q) seasonal ARIMA model if

A(B)D(B*)V VP X, =B(B)®(B*)¢, (4)

where ® and ® are polynomials of order P and Q
respectively. That is,

®O(B°)=1+¢B° +..+¢,B*", (5)
©(B*) =1+6,B° +...+6,B%, (6)
where the ¢, and @, are constants such that the zeros of

the equations (5) and (6) are all outside the unit circle for
stationarity and invertibility respectively. Equation (5)
represents the autoregressive operator whereas (6)
represents the moving average operator.

Existence of a seasonal nature is often evident from the
time plot. Moreover for a seasonal series the ACF or
correlogram exhibits a spike at the seasonal lag. Box and
Jenkins (1976) and Madsen (2008) are a few authors that
have written extensively on such models. A knowledge of
the theoretical properties of the models provides basis for
their identification and estimation. The purpose of this
paper is to fit a seasonal ARIMA model to Nigerian
Inflation Rate (INFL) series.

MATERIALS AND METHODS

The data for this work are inflation rates — All items (Year
on Change)- from 2003 to 2011 obtainable from the Data

and Statistics publication of Central Bank of Nigeria
retrievable from the website http://www.cenbank.org/.

Determination of the orders d, D, p, P, g and Q:
Seasonal differencing is necessary to remove the seasonal
trend. If there is secular trend non-seasonal differencing
will be necessary. To avoid undue model complexity it
has been advised that orders of differencing d and D
should add up to at most 2 (i.e. d + D < 3). If the ACF of
the differenced series has a positive spike at the seasonal
lag then a seasonal AR component is suggestive; if it has
a negative spike then a seasonal MA term is suggestive.

As already mentioned above, an AR(p) model has a
PACEF that truncates at lag p and an MA(q)) has an ACF

that truncates at lag g. In practice =2 /+/+1 where n is the

— =
sample size are the non-significance limits for both
functions.

Model Estimation

The involvement of the white noise terms in an ARIMA
model entails a nonlinear iterative process in the
estimation of the parameters. An optimization criterion
like least error of sum of squares, maximum likelihood or
maximum entropy is used. An initial estimate is usually
used. Each iteration is expected to be an improvement of
the last one until the estimate converges to an optimal
one. However, for pure AR and pure MA models linear
optimization techniques exist [See for example Box and
Jenkins (1976), Oyetunji (1985)].

There are attempts to adopt linear methods to estimate
ARMA models [See for example, Etuk (1987, 1996)]. We
shall use Eviews software which employs the least
squares approach involving nonlinear iterative techniques.

Diagnostic Checking

The model that is fitted to the data should be tested for
goodness-of-fit. We shall do some analysis of the
residuals of the model. If the model is correct, the
residuals would be uncorrelated and would follow a
normal distribution with mean zero and constant variance.

The autocorrelations of the residuals should not be
significantly different from zero.

RESULTS AND DISCUSSION

The time plot of the original series INFL in figurel shows
no clear secular trend nor seasonality. Seasonal (i.e. 12-
month) differencing of the series produces a series
SDINFL also with no trend nor clear seasonality (see Fig.
2). Non-seasonal differencing yields a series DSDINFL
with no trend and no clear seasonality (see Fig. 3). Its
ACF in figure 4 has a negative spike at lag 12 revealing a
seasonality of lag 12 and a seasonal MA component to
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Table 1. Model Estimation.

Dependent Variable:

DSDINFL

Method: Least Squares
Date: 01/25/12 Time: 20:04

Sample(adjusted). 2004:02 2011:12

Included observations: 95 after adjusting endpoints
Convergence achieved after 11 iterations
Backcast: 2003:01 2004:01

Variable Coefficient  Std. Error  t-Statistic  Prob.
MA(1) 0.184619  0.077003  2.397550  0.0185
MA(12) -0.641404  0.057709 -11.11443  0.0000
MA(13) 0.077588  0.088573  0.875975  0.3833
R-squared 0498427 Mean dependent var -0.140000
Adjusted R-squared 0487524 S.D. dependent var 3.651272
S E. of regression 2613852 Akaike info criterion 4.790597
Sum squared resid 628 5647 Schwarz criterion 4.871246
Log likelihood -224 5534  F-statistic 4571156
Durbin-Watson stat 1.752935 Prob(F-statistic) 0.000000
Inverted MA Roots 94 81+ .48i 81-48i 46+ .83
46 - 83i 12 -.03 - 96i - 03+ 96i

-51-83i -51+83i  -86+.48i -.86 -.48i

-.99
Table 2. Forecasts.

Time Residuals DSDINFL SDINFL INFL
December 2010 -1.87861 -2.5 -2.1 11.8
January 2011 0.48996 -0.2 -2.3 121
February 2011 -1.73901 -2.2 -4.5 111
March 2011 2.18770 2.5 -2.0 12.8
April 2011 -1.39480 -1.7 -3.7 11.3
May 2011 1.82048 3.2 -0.5 12.4
June 2011 -2.49961 -34 -3.9 10.2
July 2011 -0.00673 0.3 -3.6 9.4
August 2011 -0.19715 -0.8 -4.4 9.3
September 2011 1.44585 11 -3.3 10.3
October 2011 -0.91003 0.4 -2.9 10.5
November 2011 0.38172 0.6 -2.3 10.5
December 2011 -0.41409 0.8 -1.5 10.3
January 2012 -0.536 -2.04 10.1
February 2012 1.153 -0.89 10.2
March 2012 -1.538 -2.43 10.4
April 2012 1.064 -1.37 9.9
May 2012 -1.276 -2.64 9.8
June 2012 1.745 -0.90 9.3
July 2012 August 2012 -0.189 -1.09 8.3
September 2012 0.126 -0.96 8.3
October 2012 November 2012 -0.943 -1.90 8.4
December 2012 0.696 -1.20 9.3

-0.315 -1.52 9.0
0.295 -1.22 9.1
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Fig. 1. INFL.
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Fig. 2. SDINFL.
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Fig. 3. DSDINFL.

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

1 0212 0.212 44230 0.035
2 0.081 0.037 5.0671 0.079
3 0.079 0.057 5.6852 0128
4 -0.132 -0.171 7.4598 0.113
5 -0.050 0.005 7.7181 0172
6 -0.080 -0.064 8.3772 0.212
7 -0.088 -0.034 91877 0.239
8 0.068 0.08% 9.6801 0288
9 -0.139 -0176 11.759 0.227
10 -0.185 -0.152 15.464 0.116
11 -0.181 -0.155 19.064 0.060
12 -0.461 -0.406 42.662 0.000
13 -0.089 0.046 43.549 0.000
14 0.012 0.008 43.566 0.000
15 0.007 -0.007 43.571 0.000
16 0.137 -0.039 45.757 0.000
17 0.178 0.120 49.496 0.000
18 0157 0.056 52.464 0.000
19 0.100 -0.015 53.677 0.000
20 0.007 0.020 53.684 0.000
21 0.091 -0.021 54.707 0.000
22 0.088 -0.042 55683 0.000
23 0.038 -0.045 55.866 0.000
24 -0.015 -0.242 55.894 0.000
25 0.015 0.063 55.923 0.000
26 -0.046 -0.011 56.203 0.001
27 -0.012 0106 56.224 0.001
28 -0.125 -0.077 58.377 0.001
29 -0.113 0.085 60.145 0.001
30 -0.052 0.0%1 60.522 0.001
31 -0.086 -0.059 61.587 0.001
32 -0.041 -0.006 61.830 0.001
33 0.011 0.009 61.847 0.002
34 0.072 0.065 62.626 0.002
35 0.052 -0.064 63.042 0.003
36 0.062 -0.086 63.635 0.003

Fig. 4. Correlogram of DSDINFL.
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Series: Residuals
12 | Sample 2004:02 2011:12
Observations 95
10
Mean -0.114352
8| Median -0.035749
Maximum 10.00116
Minimum -8.305539
6- Std. Dev. 2 583339
Skewness -0.043041
4- Kurtosis 6.045805
2 Jarque-Bera  36.75050
Probability 0.000000
0.

Fig. 5. Histogram of Residuals.

Date: 01/25/12 Time: 20:13

Sample: 2004:02 2011:12

Included observations: 95

Q-statistic probabilities adjusted for 3 ARMA term(s)
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Fig. 6. Correlogram of Residuals.
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the model. The PACF shows no spike in the early lags (1,
2, 3, ...) suggesting a non-seasonal MA component. We
therefore propose a (0, 1, 1)x(0, 1, 1), seasonal model.

That means DSDINFL, = Bi&.1 + Bi2 €112
+ Pis€r1z * & (7)

The estimation of the model is summarized in table
1. The fitted model is given by DSDINFL; -
0.184619¢;, + 0.641404¢,1, -0.077588¢.13= ¢, (8)
(+0.077003)  (+0.057709) (+0.088573)

The estimation involved 11 iterations. Clearly only By3 is
not significantly different from zero, being lesser than
twice its standard error. The histogram of the residuals in
figure 5 shows that the residuals are normally distributed
with zero mean indicating model adequacy.

Moreover the correlogram of the residuals in figure 6
depicts the adequacy of the model. Virtually all the
residual autocorrelations are not significantly different
from zero.

FORECASTING:
For the model (7) at time t+k we have

Xisk = Bresker + Proeske12 + P13€eek-13

Obtaining conditional expectations given the series up to
time t, we have

X Q) = Bie + Préian + Paéin + &

X (K) = Bioéiirs + Prabras k22,3, 12

where )Zt (K) is the k-step ahead forecast from time t.

CONCLUSION

The INFL series has been shown to follow a (0, 1, 1)x(0,
1, 1);, model. This model has been shown to be adequate.
On the basis of the model 2012 forecasts have been
obtained.
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