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ABSTRACT 
 

Avoiding resonance and reducing the sound radiation from vibrating beams are crucial objectives in structural design. In 
this paper, a simple approach for optimizing the natural frequencies and minimizing the radiated acoustic power from 
vibrating thin-walled beams is presented. The method is basically based on bending the beams at specific key points. The 
out of plane coordinates of these key points are chosen as design variables. Bending the beam alters its stiffness and its 
mode shapes and as a result changes its natural frequencies and the radiated sound power. The design method couples the 
finite element method for modal and harmonic analysis, the Lumped Parameter Model (LPM) for sound power 
calculation, and Genetic Algorithm (GA) for the optimization process. Several examples using bending technique are 
provided. The optimization results show the efficiency of bending technique in modifying the natural frequencies and 
reducing the sound radiation from vibrating clamped beams. 
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INTRODUCTION 
 
Beams are widely used in many mechanical and civil 
engineering applications. They are frequently subjected to 
dynamic excitations resulted from unbalanced rotating, 
oscillating equipment, etc. Thus, improving the 
vibroacoustic performance of beams is an important 
requirement in today’s structural design.  The literature 
contains many proposals for altering the vibroacoustic 
characteristics of structures. These proposed methods are 
known as Structural Dynamic Modification methods 
(SDM). One objective of these methods is to shift the 
structure natural frequencies away from the frequency of 
the excitation force to avoid the resonance phenomenon. 
Another objective is to reduce the sound power of 
vibrating structures. 
 
For many years, a number of studies have examined 
shifting the natural frequencies of beams. For example, by 
adding internal point supports, Szelag and Mroz (1979) 
maximized the natural frequencies of beam by changing 
the support positions and stiffnesses. Wu and Lin (1990) 
studied the effect of adding concentrated masses to a 
cantilever beam. They found that the fundamental 
frequency of a cantilever beam which is carrying a single 
mass increased when the mass is moved from the free end 
of the fixed end. Wang and Cheng (2005) used structural 
patches to shift the natural frequencies of a beam to the 
designated values. Other authors studied the problem of 
beams carrying elastically mounted masses, carrying 
springs and/ or dampers (Wu and Chou, 1998; Zhou and 

Ji, 2006). Changing the beam geometry is used also for 
altering the natural frequencies of beams. For example, 
Ece et al. (2007) studied the natural frequencies of a 
tapered beam in which its width was varied exponentially 
along its length. They found that this design increased the 
natural frequencies of clamped beams. Karihaloo and 
Niordson (1973) maximized the fundamental frequency of 
a cantilever beam by tapering the cross section and 
keeping the mass constant. Gupta and Murthy (1978) 
investigated the optimal design of uniform non-
homogeneous beams. They varied the modulus of 
elasticity distribution through the beams, assuming a 
constant density, to maximize its fundamental frequency. 
Recently, Alshabatat and Naghshineh (2012) studied 
optimizing the natural frequencies of different kinds of 
beams by forming a series of cylindrical dimples on their 
surfaces. 
 
In addition to shifting the natural frequencies, the passive 
SDM methods are used to reduce the radiated sound 
power from vibrating beams. For example, Naghshineh 
and Koopmann (1992) used material tailoring to minimize 
the sound radiation at specific frequency. They enforced 
the structure to vibrate as a weak radiator at this 
frequency. In their approach, the radiation problem was 
decoupled from the structural vibration problem. They 
found the optimal surface velocity distributions which 
produce the minimum radiation condition (weak radiator), 
and then they enforced the structure to vibrate similar to 
the optimal surface velocity distributions by tailoring the 
modulus of elasticity and density of the structure. 
Marburg et al. (2006) investigated the minimization of 
sound radiation from finite beams over a frequency range. *Corresponding author email:  nabeel963030@yahoo.com  



Alshabatat and Shaqarin 2154 

They optimized the distribution of density and modulus of 
elasticity to minimize the sound power of vibrating beams 
over a frequency range containing about eight natural 
frequencies. Koopmann and Fahnline (1997) used point 
masses to minimize the radiated sound power of a baffled 
beam at its second symmetric natural frequency. Later in 
2011, Cheng et al. minimized the sound radiation of a 
vibrating beam by patterning the beam with a series of 
cylindrical dimples such that one or more of the vibration 
modes have the same shape as the corresponding weak 
modes. 
 
A limited number of simple cases have analytical 
equations to calculate the radiated sound power.  
Different approximate methods are used to estimate the 
sound power. One such method is the volume velocity 
(VV) approach which is used to approximate the sound 
power at low frequencies (Fritze et al., 2009). The 
Equivalent Radiated Power (ERP) which assumes that the 
radiation efficiency is equal to one, therefore, this method 
is suitable for high frequencies (Fritze et al., 2009). The 
Lumped Parameter Model (LPM) is based on the 
approximation of the Rayleigh integral formula (Fahnline 
and Koopmann, 1996). The computation of the power 
based on ERP and VV is faster than the sound power 
computation based on LPM. However, the LPM gives the 
most accurate results among the three methods (Fritze et 
al., 2009). To this reason, the LPM has been used in this 
study. 
 
This paper aims to introduce a simple method for 
optimizing the natural frequencies and for minimizing the 
radiated sound power from vibrating beams. The method 
based on bending the beam at specific points. Performing 
the beam structure by bending alters its stiffness 
significantly with a negligible increase in its mass. The 
presented design strategy is as follows: First, the natural 
frequencies and the vibration response of the beam 
structure are calculated by using the finite element 
method. In particular, ANSYS parametric design language 
is used in modeling and finite element analysis. Then, the 
radiated sound power from the vibrating beam is 
calculated based on LPM. Finally, an optimizer based on 
the method of genetic algorithm (GA) is used to optimally 
design the beam.  
 
THEORETICAL BACKGROUND 
 
Structural vibration 
To calculate the sound power of a vibrating beam, we 
need to know the velocity distribution throughout the 
beam. The finite element method is used to predict and to 
analyze the vibrating motion of the beams. The dynamic 
equations of motion for the forced harmonic response can 
be given by the following linear system of equations 

, (1) 

where , , and  represent the mass, damping, 
and stiffness matrices of the finite element model, 
respectively,  and  represent the nodal 

displacement vector and nodal excitation vector,  

represents the excitation frequency, and . The 
nodal displacement vector can be calculated by the 
expansion of structural response in terms of eigenvectors. 
The structural response as a function of eigenvectors is 
given by (Ewins, 2000)  

 ,   (2) 

where  is the mass normalized eigenvector 

corresponding to the ith mode, and  is the damping loss 
factor corresponding to the ith mode. 
 
Acoustic analysis 
Consider a beam located within an infinite rigid baffle as 
shown in figure 1. The sound pressure at any observation 
point  can be calculated by using the Rayleigh 
integral (Junger and Feit, 1993) 

,  (3) 

where  is the acoustic wave number ( ),  is 

the speed of sound in ambient fluid,  is the circular 

frequency of the excitation force,  is the density of the 

surrounding fluid,  is the position vector of the 

observation point,  is the position vector of the 

elemental surface ,  is the normal velocity of 

surface element , and .  The acoustic 

intensity at any point  is given by (Junger and Feit, 
1993) 

,    (4) 

where  is the real part of the number inside the 

bracket, and the ( ) represents the complex conjugate. 
The radiated sound power can be calculated by integrating 
the intensity over a surface surrounding the radiating 
beam or on the surface of the beam as 

.    (5) 

In discretized form, Eq. 5 can be written as 
,  (6) 

where  is the number of elements, , , and  are 
the area, the average pressure, and the conjugate average 
normal velocity at element , respectively. The sound 
power can be approximated using the Lumped Parameter 
Model which is presented by Fahnline and Koopmann 
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(1996). This method is based on dividing the radiated 
surface into elements and characterizing the amplitude of 
the radiation from each element by its volume velocity. 
The LPM for the radiated power is given by  

,  (7) 

where  is the acoustic resistance of element  to 

element ,  and  are the volume velocities of 

elements   and , respectively. The acoustic resistance 
is given as 

,  (8) 

where  is the distance between element  and element 

 centers. 

 
Fig. 1. Coordinate System of a Beam radiator. 
 
MODELING OF A BENT BEAM 
 
The goal of beam bending is to alter its local stiffnesses 
with negligible increase in its mass. The bent beam is 
modeled as shown in figure 2. The beam is bent along 
nine key points; where the design variables are the heights 
of these key points (the z-coordinates). The bent beam is 
modeled by ANSYS Parametric Design Language 
(APDL). In this scripting language, the model can be built 
in terms of parameters, so the locations of the key points 
can be modified systematically in order to enable the 
optimization process to take place. A beam element, with 
two nodes and three degrees of freedom at each node, is 
used for meshing the solid model. The degrees of freedom 
of each node are two translations in the x- and z-directions 
and one rotation about the y-axis. The use of the finite 
element technique allows us to extract the mode shapes, 
to calculate the vibration response, and to calculate the 
sound radiation from such vibrating beams. 
 
The objective of the beam bending design is to find the 
optimal values of the bending parameters to optimize the 
fundamental frequency or combination of natural 

frequencies and to minimize the sound radiation from a 
vibrating beam at a specific frequency or a broad 
frequency band.  
 
OPTIMIZING THE NATURAL FREQUENCIES OF 
BEAMS BY BENDING TECHNIQUE 
 
In this section, two examples are presented to show the 
efficiency of bending technique to shift the natural 
frequencies of clamped-clamped beams. In the first 
example, the fundamental frequency of a clamped-
clamped beam is maximized by bending the beam at nine 
points. In the second example, the bending technique is 
used to maximize the gap between two adjacent natural 
frequencies. In both examples, the beam under 
consideration is a clamped-clamped beam with length L = 
0.3 m, width b = 0.025 m, thickness h = 0.00116 m, 
modulus of elasticity E=190 GPa, and density  = 7600 
kg/m3. The first five natural frequencies of this beam 
before bending are 66.2, 182.6, 358.0, 591.7, and 883.8 
Hz, respectively.  
 
In the first example, we seek for the design of a clamped 
beam that yields the maximum fundamental frequency. 
The GA is used to find the heights of the key points which 
give the maximum fundamental frequency. The 
population size in each generation is assumed 100. The 
stopping criterion is chosen as the maximum number of 
generations is 150 generations or the objective function 
tolerance is less than 10-4. In general, our optimization 
problem can be written as 
Maximize     ,        

Subject to     ,  i= 1, 2,..., 9, (9) 

where , and  are the lower and upper bounds of key 
points heights, respectively. The feasible heights of 
bending points vary between -5 mm and 5 mm.  
 
The optimal clamped bent beam which maximizes the 
fundamental frequency is shown in figure 3. The optimal 
design variables are summarized in table 1. By creating 
the optimal design, the fundamental frequency can be 
increased from 66.2 Hz to 182.5 Hz, which is 175.7% 
greater than the fundamental frequency of the original 
beam. As shown in Fig. 3, the optimal beam design which 
maximizes the first natural frequency is similar to a half 
wave. In other words, the optimal design is similar to the 
mode shape which corresponds to the first natural 
frequency. This result agrees with the results of Kelly et 
al. (1991) which explains the possibility of avoiding an 
unwanted vibration mode of a beam by preforming the 
beam into the shape of unwanted mode of vibration. 
 
When the excitation frequencies are limited within a 
range of upper and lower bounds, the suitable design of 
the beam may be obtained by maximizing the gap 
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between these adjacent frequencies. In the second 
example, the distance between the fourth and fifth natural 

frequencies of a clamped beam is maximized by bending 
design. The beam has the same dimensions and material 

 
Fig. 2. Bent beam model with nine key points. 
 

 
Fig. 3. The Optimum design of a bent beam which maximizes the fundamental frequency (exaggerated vertical scale). 

 

 
Fig. 4. The Optimum design of a bent beam which maximizes the gap between the fourth and fifth natural frequencies 
(exaggerated vertical scale). 
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Fig. 5. (a) Beam excited by a point force, and (b) Sound power level spectrum of the beam. 
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properties of the beam in the previous example. The 
fourth and fifth natural frequencies of this beam before 

bending are 591.7 Hz and 883.8 Hz, respectively. So the 
difference between the frequencies is 292.1 Hz. The 
optimization problem is the same as the problem which is 
illustrated in Eq. 9, but with maximizing  

instead of maximizing . 
After solving the optimization problem and creating the 
optimal design, the fourth and fifth natural frequencies are 
569.3 and 1224.0 Hz, respectively. The gap between these 
frequencies is 654.7 Hz, which is 124.1% greater than the 
gap between the frequencies of the original beam. The 
optimal design which gives the maximum gap between 
the fourth and fifth natural frequencies is shown in figure 
4. The optimal design variables are summarized in table 
2. 
 
MINIMIZING THE RADIATED SOUND POWER 
OF VIBRATING BEAMS BY BENDING 
TECHNIQUE 
To demonstrate the efficiency of bending technique to 
minimize the radiated sound power of vibrating clamped 
beams, two examples are presented in this section. In the 

first example, we seek the design of a bent clamped beam 
that yields a minimum sound radiation at a specific 

frequency. In the second example, we seek the design of a 
bent clamped beam that yields a minimum sound 
radiation at the broad frequency band. In both examples, 
the GA is used to find the heights of the key points which 
give the minimum sound radiation. 
 
The beam under consideration has the same dimensions 
and material properties of the beam in previous examples. 
It has loss factor = 0.02. It is excited by a harmonic 

force at point (  0.7L, see figure 5(a)), having uniform 
amplitude of 0.5 N in the frequency range of 10-600 Hz. 
The location of the excitation point is selected such that 
this force will excite all the mode shapes within the 
frequency range of interest. The plate is assumed to be in 
an infinite baffle. The acoustic medium is air having 
acoustical impedance  rayle. The sound power 
is calculated numerically based on Eq. 7. The sound 
power spectrum is shown in figure 5(b). The peaks in the 
plot represent the sound radiation at beam first four 
natural frequencies. Among these, there are two odd mode 
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Fig. 6. Sound power level spectrum of the optimized beam at 358 Hz compared with the original beam. 
  

 
Fig. 7. The optimum design of a bent beam which minimizes the sound power level at 358 Hz (exaggerated vertical 
scale). 
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shapes that radiate high levels of sound power. The first 
one is associated with the first mode shape (  

Hz), the second one is associated with the third mode 
shape (  Hz). It is noted that there are small 
sound power peaks in the second and fourth mode shapes, 
and this result is expected due to the volume velocity 
cancellation effect at these even modes. 
 
In the first example, the goal is to minimize the sound 
radiation from the vibrating clamped beam at a frequency 
of 358 Hz by bending it at 9 key points. The frequency 
358 Hz is selected because the beam radiates high sound 
power at this frequency (LW = 76.7 dB). Again, the GA is 
used in the minimization process. It is used to find the 
heights of the key points which give the minimum sound 
radiation at 358 Hz. The population size in each 
generation is assumed 150. The stopping criterion is 
chosen as the maximum number of generations is 150 
generations or the objective function tolerance is less than 
10-3. The optimization problem is the same as the problem 
which illustrated in Eq. 9, but with minimizing the sound 
power level at 358 Hz instead of maximizing . Figure 6 
shows the sound power spectrum plot of the optimized 
beam compared with the original one. By creating the 

optimal beam, the sound power level at 358 Hz can be 
decreased from 76.7 dB to 34.8 Hz (41.9 dB decrease). 

Figure 7 shows the optimal design of the bent beam and 
Table 3 summarizes the optimal design variables. The 
sound minimization is achieved by shifting the natural 
frequencies far away from frequency of 358 Hz and by 
redistributing the volume velocity to achieve the 
maximum volume velocity cancelation. In other words, 
the reduction of the overall volume velocity results in a 
reduction of the sound power. Physically, volume velocity 
cancelation means sound pressure cancelation at the 
surface of the plate, and this causes little sound energy to 
be radiated. 
 
 In the second example, the sound radiation is minimized 
over a broad frequency band by bending design of the 
vibrating clamped beam. The objective function in this 
example is selected as the average radiated sound power 
level over a frequency range of interest, 

,   (10) 

where  is the number of frequency increments 

between  and , and  is the sound power 
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Fig. 8. Sound power level spectrum of the optimized beam over broad frequency band compared with the original 
beam. 
  

 
Fig. 9. The optimum design of a bent beam which minimizes the sound power level at over broad frequency band 
(exaggerated vertical scale). 
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level at the th frequency. The beam under consideration 
and the optimization constraints are similar to those in the 
last example. However, the objective function is to 

minimize the sound radiation within  150 Hz and 

 400 Hz. The frequency range of interest is 
divided into 50 increments. Again, the minimization is 
carried out using the genetic algorithm. The results of 
sound minimization using bending technique are 
summarized in table 4. Figure 8 shows the sound power 
spectrum plot of the optimized beam compared with the 
original beam. By creating the optimal beam as shown in 
figure 9, the average sound power level decreases from 
63.8 dB to 48.5 dB (15.3 dB). Figure 9 shows that the 
radiated sound power is decreased by increasing the 
stiffness near the excited area. Similar results were 
observed by Lamancusa (1993) and Marburg et al. 
(2006). 
 
CONCLUSION 
 
The bending method for optimizing the natural 
frequencies and for minimizing the sound radiation from 
vibrating beams was demonstrated. The design approach 
couples the finite element method for modal and 
harmonic analysis, the Lumped Parameter Model for 
acoustic analysis, and the genetic algorithm for 
optimization.  The beams under consideration were bent 

at some key points. The z-coordinates of these key points 
were considered as design variables. The optimization 
examples show the efficiency of bending technique to 

increase the fundamental frequency and the gap between 
the fourth and fifth natural frequencies of clamped beams. 
Moreover, the bending technique is efficient in 
minimizing the sound radiation at a single frequency and 
over broad frequency band. 
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