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ABSTRACT 
 

In this paper, fluid flow over contraction geometry with a moving lower edge is studied by using conformal mapping 
techniques. Using elliptic integral is presented. The resulting streamlines are very much convenient and acceptable. 
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INTRODUCTION 
 
In many engineering applications, lubrication, channel 
flows, pipe flows etc, the contraction appears frequently, 
which makes it necessary to study thoroughly the 
distribution of the streamlines and its values along the 
geometry of the flow with different contraction ratios. In 
this paper we restrict ourselves to domains which can be 
broken up into a union of smi-infinit rectangles. In 
particular we consider the contraction geometry which is 
an infinite channel whose diameter changes abruptly. In 
this paper we used the conformal mapping for studying 
the flow of a fluid in contraction geometry by computing 
its streamlines through transformed it to a flow on 
rectangle, (Ismail and Allan, 1995). This transformations 
are determined by using Schwarz-Christoffel (S-C) 
transformation which its numerical computations have 
been carried out by different methods in recent years. For 
example, the conformal mapping of unit disk onto a 
prescribed polygon has been studied successfully by 
Davis (1979). The mapping from a straight channel to a 
channel of arbitrary shape and periodic channel has been 
investigated by Floryan (1985). We define a Laplace’s 
equation with mixed boundary conditions on contraction 
geometry and transform the whole problem onto a definite 
rectangle by means of the upper half plane .we use the 
fact that: if the fluid is following Laplace’s equation, then 
under (S-C) transformation its form is unaltered. But if 
the flow is obeying Poisson’s equation, the change is only 
in the source function (Dorr, 1970). 
 
Schwarz-Christoffel transformation. 
Consider the Schwarz-Christoffel integral 
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which maps the upper half of the t-plane to interior of 
open polygon in the z-plane. There are a total of 

22 +N parameters  
 
α α α1 2 1 2 1, , . . ., , , , . . ., ,N Na a a c and c where 
a a aN1 2, , . . .,  are points on the real axis whose images 

are to be vertices of the polygon and the inequality 
relations: 
 
a a a aN N1 2 1< < < <−. . .      (3) 

 
are taken as the constraints of the system. The parameters 
α π α π α π1 2, , . . ., N  denote interior angles of the 

polygon with N vertices such that  
 
α π α π α π π1 2 2+ + + = −. . . ( )N N   (4) 

 
It is noted that the Nth parameters  αN Nand a don’t 
appear explicity in the integral since the last one of the 
vertices of the polygonal region is mapped to a point at 
infinity on the real axis of the ζ-plane. Vertices of the 
polygon on the z-plane and these corresponding mapping 
points along the real axis on the ζ-plane satisfy the 
relation 
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Mathematical formulation of the problem 
The problem mathematically amounts to the solution of 
Laplace’s equation ∇ =2 0ψ  with mixed boundary 
conditions as given in figure 1 below 
 

 
Fig. 1. Contraction geometry and boundary conditions. 
 
where ψ represent the stream function of the fluid that is 
moving from right to left through some contraction of 
specified width. We here assume that the fluid is 
irrotational non-viscous, bearing in mind that the same 
method of solution which be described here.  Below can 
be used also in the case of rotational non-viscous flow. 
 
Transformation from the upper half plane to the 
contraction geometry 
 
The contraction geometry, Ω  of figure 1 can be mapped 
conformally  onto the rectangle , ''Ω  defined by 
                                          

( ){ }bvauavu <<<<−=Ω 0,:,'' . 
 
This transformation is performed in two stages: 
1- Let iyxz +=  (contraction geometry) defined on the 

z-plane and ηξ it +=  (upper-half), then Ω  can be 
mapped conformally onto the upper half plane by means 
of the transformation 
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where α is contraction ratio. If we write viuw +=  then 

'Ω  is mapped conformally onto ''Ω  y means of the 
transformation 

t
dw
dt π−=   (7) 

2-Given a point w w in the region ''Ω  it is a simple  task 
to write down the point in z  in Ω to which it corresponds 
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where )exp( wt π−−= and  .
1

2α
β =  

One cannot, in a straightforward manner, write down the 
analytic solution in Ω. One would need to find 
analytically )(zw  given above. What we have done is to 

take a point w  in ''Ω  n which the analytic solution is 
known, then find z  in contraction. 
 
Finding the points of mapping from the upper half-
plane to rectangle. 

 
Fig. 2. Mapping from upper plane to rectangle. 

 
By using (S-C) transformation, the function which defines 
a conformal mapping of the upper half plane onto a given 
rectangle may be represented in the form 
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by using the correspondence points, we get 01 =c  and 
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The integral on the right is the so-called complete elliptic 
integral of the first kind which does not have a closed 
form. In order to be able to perform the mapping, we have 
to find the value of the above integral at each chosen 
point of the upper half-plane. The above integral written 
in the form 

a1
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By using Landen’s transformation, 
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This can be written    F k k F k( , ) ( , )φ φ=
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It is seen that k k< <1 1. By, successive application of 
Landen’s transformation a sequence of moduli 
k nn , , , ,...= 1 2 3  is obtained such that 
k k k< < <1 2 1...  and we can prove that lim .

n nK
→∞

= 1  

From this it follows that 
 
           

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−=

−
= ∫ 24

tanln
...

)sin1(

...
),( 321

0
2

321 φπ
θ

θφ
φ

K
kkkd

K
kkkkF   (15) 

 
where 
 

K k
k K

k
k K

k
k

n n

1 2
1

1
3

22
1

2
1

2
1 2=

+
=

+
=

+
=

→∞

, , ,

limand φ φ
 

(16) 

 
By using this result, ),( φkF can be computed. 
 
Finding the values of ψ over the rectangle 
This is equivalent to solving Laplace’s equation with 
mixed boundary conditions as in figure 3. 
 

 
 
Fig. 3.  Rectangle geometry and boundary conditions. 
 
 

The final solution of this problem on the above rectangle 
given by 
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RESULTS AND DISCUSSION 
 
We have designed a program written in FORTRAN to 
calculate the streamlines of the solution ψ of the entire 
problem at every points of a rectangle. The results show 
that the method described in this paper gives accurate 
results in the whole domain of contraction geometry. The 
streamlines of Laplace’s equation on the rectangle is 
given in figure 4 and the solution over the contraction 
geometry shown in figures 5,6 at different contraction 
ratios which provides the streamlines of some contraction 
with a base that is moving with a constant velocity. This 
results is very acceptable compared to those obtained by 
Phillips and Davies (1988) and Chuang and Hsiung 
(1993). 
 

 
Fig. 4. Contours of ψ  in the rectangle. 

 
 

Fig. 5. Contours of ψ  in the contraction with 5.=α  
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Fig. 6. Contours of ψ  in the contraction with 25.=α  
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