SHORT COMMUNICATION

A NOTE ON $L{ }_{-}^{p}$ CONVERGENCE OF CERTAIN COSINE SUMS

Maher MH Marzuq
84 Raymond Road. Plymouth, Massachusetts 02360, USA

Abstract

In this paper we obtain theorems concerning L_{-}^{p} space with $\mathrm{p}=1,0<\mathrm{p}<1$ and $0<\mathrm{p}<\frac{1}{2}$. We will redefine some

 theorem of Telyakovskii (1973) and Corollary of Marzuq (1975) as well as Corollary of Ram (1977).Keywords and phrases: Bounded variation, δ - quasi-monotone sequence, certain cosine sums, L_{-}^{p} and convergence. AMS Subject Classifications 2010, Primary 42A20, 42A32

INTRODUCTION

Write
$f(x): \frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos k x$,
$f_{m}(x)=\frac{1}{2} \sum_{k=0}^{\infty} \Delta a_{k}+\sum_{k=1}^{m}\left(\sum_{j=k}^{m} \Delta a_{j}\right) \cos k x$,
$S_{N}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{N} a_{k} \cos k x$
$g_{n}(x)=\frac{1}{2} \sum_{k=0}^{n} a_{k}+\sum_{k=1}^{n}\left(\sum_{j=k}^{n} a_{j}\right) \cos k x$
Garrett and Stanojevic (1975), Garrett et al. (1980).
2. Statements of Results.

Definition 1. A sequence $\left\{a_{n}\right\}$ is said to be of bounded variation if $\sum_{n=1}^{\infty}\left|\Delta a_{n}\right|<\infty$, where $\Delta a_{n}=a_{n}-a_{n+1}$.
Definition 2. A sequence $\left\{a_{n}\right\}$ is said to be quasimonotone if $a_{n} \rightarrow 0$ as $n \rightarrow \infty ; a_{n}>0$ ultimately and $\Delta a_{n} \geq-\delta_{n}$, where $\left\{\delta_{n}\right\}$ is a sequence of positive numbers Boas (1965).

Definition 3. A sequence $\left\{a_{n}\right\}, \mathrm{n}=1,2 \ldots$ is said to satisfy condition S if
(i) $a_{n} \rightarrow 0$ as $n \rightarrow \infty$,
(ii) there exist a numbers A_{n} such that $\left\{A_{n}\right\}$ is monotonically decreasing to 0 and
$\sum_{n=1}^{\infty} A_{n}<\infty$ is convergent,
(iii) $\left|\Delta a_{n}\right| \leq A_{n}$ for all n.

Telyakovskii (1973).
Throughout this paper C denotes a positive constant, not necessarily the same at each occurrence.

We introduce the following definition.

Definition 4. A sequence $\left\{a_{n}\right\}, \mathrm{n}=1,2, \ldots \ldots$ is said to satisfy condition T if
(i) $a_{n} \rightarrow 0$ as $n \rightarrow \infty$,
(ii) there exist $A_{n} \mathrm{n}=1,2, \ldots$ such that $\left\{A_{n}\right\}$, is a δ quasimonotone sequence and $\sum_{n=1}^{\infty} n \delta_{n}, \sum_{n=1}^{\infty} A_{n}$ converge,
(iii) $\left|\Delta a_{n}\right| \leq A_{n}$ ultimately.

Marzuq (1982)
Independently Zenei (1992) considered the class $S(\delta)$, later it is proved by

Leindler (2000) and Telyakovskii (2000), the classes S,T and $S(\delta)$ are identical.

[^0]We prove:
Theorem 1. If $\left\{a_{n}\right\}$ belongs to the class T, then $f_{n}(x)$ converses to $f(x)$ in L_{-}^{1} norm.

Proof. Let $N^{\prime}>N$. Then by (1.3)

$$
\left|S_{N^{\prime}}(x)-S_{N}(x)\right|=\left|\sum_{k=N+1}^{N^{\prime}} a_{k} \cos k x\right|
$$

and by partial summation,
$\left|S_{N^{\prime}}(x)-S_{N}(x)\right|=\left|\sum_{k=N+1}^{N^{\prime}-1}\left(\Delta a_{k}\right) D_{k}(x)-a_{N+1} D_{N}(x)+a_{N^{\prime}} D_{N^{\prime}}(x)\right|$
Where $D_{k}(x)$ is given by
$D_{k}(x)=\frac{1}{2}+\sum_{k=1}^{n} \cos k x=\frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}$
Zygmund (1968).
We have
$\left|D_{k}(x)\right|<\frac{\pi}{2 x}$ for $\mathrm{x}>0$,
Bary (1964). Therefore for x. >0 and $N^{\prime}, N>N_{0}(\in)$,
$\left|S_{N^{\prime}}(x)-S_{N}(x)\right| \leq \frac{\pi}{2 x}\left[\sum_{N+1}^{N^{\prime}-1}\left|\Delta a_{k}\right|+\left|a_{N+1}\right|+\left|a_{N^{\prime}}\right|\right]$.
Since $\left\{a_{n}\right\} \in T$, it follows that,
$\left|S_{N^{\prime}}(x)-S_{N}(x)\right|<\in$ for $\mathrm{N}, N^{\prime}>N_{0}(\in)$ and $\mathrm{x}>0$.
Thus
$f(x)=\lim _{N \rightarrow \infty} S_{N}(x)$
exists for $x \in(0, \pi]$.
Theorem 2. Let $\left\{a_{n}\right\} \in T$. Then $f_{m} \rightarrow f$ in L_{-}^{1} norm. Proof. Using partial summation on the right of (2.3) We get

$$
\begin{aligned}
& f(x)=\lim _{N \rightarrow \infty}\left[\frac{a_{0}}{2}+\sum_{k=1}^{N-1}\left(\Delta a_{k}\right) D_{k}(x)+a_{N} D_{N}(x)-\frac{1}{2} a_{1}\right] \\
& =\lim _{N \rightarrow \infty}\left[\sum_{k=0}^{N-1}\left(\Delta a_{k}\right) D_{k}(x)+a_{N} D_{N}(x)\right]
\end{aligned}
$$

since $D_{0}(x)=\frac{1}{2}$. Then by (2.2) and Definition 4i, we
get
$f(x)=\sum_{k=0}^{\infty}\left(\Delta a_{k}\right) D_{k}(x)$.
Now, by partial summation in the second term in (1.2) we obtain
$f_{m}(x)=\sum_{k=0}^{m}\left(\Delta a_{k}\right) D_{k}(x)$.
By applying partial summation again we have for $m+1 \leq n$
$\sum_{m+1}^{n}\left(\Delta a_{k}\right) D_{k}(x)=\sum_{m+1}^{n-1}\left(\Delta A_{k}\right) T_{k}(x)+A_{n} T_{n}(x)-A_{m+1} T_{m}(x)$,
where $T_{n}(x)=\sum_{k=1}^{n} \frac{\Delta a_{k}}{A_{k}} D_{k}(x)$ Marzuq
Take $\alpha_{k}=\frac{\Delta a_{k}}{A_{k}}$.

Then for k sufficiently large $\left|\alpha_{k}\right| \leq 1$, since $\left\{a_{k}\right\} \in T$.

Hence for m sufficiently large (2.6) gives
$\int_{0}^{\pi}\left|\sum_{m+1}^{n}\left(\Delta a_{k}\right) D_{k}(x)\right| d x \leq \sum_{m+1}^{n-1}\left|\Delta A_{k}\right| \int_{0}^{\pi}\left|T_{k}(x)\right| d x+A_{n} \int_{0}^{\pi}\left|T_{n}(x)\right| d x+A_{m+1} \int_{0}^{\pi}\left|T_{m}(x)\right| d x$
By the definition of condition T and Telyakovskii (1973), we have

$$
\int_{0}^{\pi}\left|\sum_{m+1}^{n}\left(\Delta a_{k}\right) D_{k}(x)\right| d x \leq C\left[\sum_{m+1}^{n-1}\left|\Delta A_{k}\right|(k+1)+A_{n}(n+1)+A_{m+1}(m+1)\right]
$$

Let $n \rightarrow \infty$, then by Boas (1965) with $\gamma=1$

$$
\frac{\operatorname{Lim}}{n \rightarrow \infty} \int_{0}^{\pi}\left|\sum_{m+1}^{n}\left(\Delta a_{k}\right) D_{k}(x)\right| d x \leq C\left[\sum_{m+1}^{\infty}\left|\Delta A_{k}\right|(k+1)+A_{m+1}(m+1)\right]
$$

so that Fatou's lemma implies

$$
\begin{equation*}
\int_{0}^{\pi}\left|\sum_{m+1}^{\infty}\left(\Delta a_{k}\right) D_{k}(x)\right| d x \leq C\left[\sum_{m+1}^{\infty}\left|\Delta A_{k}\right|(k+1)+A_{m+1}(m+1)\right] \tag{2.7}
\end{equation*}
$$

Now for sufficiently large m, (2.4), (2.5) and (2.7) give
$\int_{0}^{\pi}\left|f(x)-f_{m}(x)\right| d x=\int_{0}^{\pi}\left|\sum_{m+1}^{\infty}\left(\Delta a_{k}\right) D_{k}(x)\right| d x \leq C\left[\sum_{m+1}^{\infty}\left|\Delta A_{k}\right|(k+1)+A_{m+1}(m+1)\right]$ and consequently,
$\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left|f(x)-f_{m}(x)\right| d x \leq C \lim _{n \rightarrow \infty}\left[\sum_{k=m+1}^{\infty}\left|\Delta A_{k}\right|(k+1)+(m+1) A_{m+1}\right]=0$
since $\sum_{k=1}^{\infty}(k+1)\left|\Delta A_{k}\right|<\infty$ and $\lim _{m \rightarrow \infty} m A_{m}=0$, by Boas (1965).
Thus $f_{m} \rightarrow f$ in L_{-}^{1} norm .
3. Generalization of Telyakovskii Theorem. In view of the identity
$f_{n}(x)=S_{n}(x)-a_{n+1} D_{n}(x)$,
where $S_{n}(x)$ is give by (1.3) and f_{n} is given by (1.2) Marzuq (1975), we deduce the
following Corollary which is a part of Theorem 4 of
Telyakovskii (1973), Corollary of Marzuq (1975), and Corollary of Ram (1977).

Corollary 1. Let $\left\{a_{n}\right\} \in T$. Then (1.3) converses in L_{-}^{1} norm to (1.1) if and only if
$a_{n} \log n \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Let $a_{n} \log n \rightarrow 0$ as $n \rightarrow \infty$. Then by (3.1)

$$
\begin{aligned}
& \int_{0}^{\pi}\left|f(x)-S_{n}(x)\right| d x=\leq \int_{0}^{\pi}\left|f(x)-f_{n}(x)\right| d x+\int_{0}^{\pi}\left|f_{n}(x)-S_{n}(x)\right| d x \\
= & \int_{0}^{\pi}\left|f(x)-f_{n}(x)\right| d x+\left|a_{n+1}\right| \int_{0}^{\pi}\left|D_{n}(x)\right| d x \\
& \leq \int_{0}^{\pi}\left|f(x)-f_{n}(x)\right| d x+C\left|a_{n+1}\right| \log n
\end{aligned}
$$

Since
$\int_{0}^{\pi}\left|D_{n}(x)\right| d x: \frac{2}{\pi} \log n$

Zygmund (1968), then by the assumption, $a_{n} \log n$ and Theorem 1.
It follows that $S_{n} \rightarrow f \quad L_{-}^{1}$ norm
Conversely, assume that $S_{n} \rightarrow f$ in L_{-}^{1} norm, then (3.1) implies that
$\int_{0}^{\pi}\left|a_{n+1} D_{n}(x)\right| d x=\int_{0}^{\pi}\left|f_{n}(x)-S_{n}(x)\right| d x \leq \int_{0}^{\pi}\left|f(x)-S_{n}(x)\right| d x+\int_{0}^{\pi}\left|f(x)-f_{n}(x)\right| d x$, and hence the hypothesis on $a_{n} \log n$ and Theorem1 imply that
$\int_{0}^{\pi}\left|a_{n+1}\right|\left|D_{n}(x)\right| d x \rightarrow 0$ as $n \rightarrow \infty$.
Therefore (3.2) and the above result imply that $a_{n} \log n \rightarrow 0$ as $n \rightarrow \infty$.

This proves Corollary 1.
4. Conversance. In the space $L^{p}(0<p<1)$. We have the following theorem:

Theorem 2. Let $\left\{a_{n}\right\}, \mathrm{n}=0,1, \ldots$, be a sequence of bounded variation such that $a_{n} \rightarrow 0$ as
$n \rightarrow \infty$. Then for $0<p<1$.
$\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left|f(x)-f_{n}(x)\right| d x=0$.

Proof of Theorem 2. From (2.4) and (2.5) we have
$\left|f(x)-f_{n}(x)\right|=\left|\sum_{n+1}^{\infty}\left(\Delta a_{k}\right) D_{k}(x)\right|$
so by (2.2) for $\mathrm{x}>0$
$\left|f(x)-f_{n}(x)\right| \leq \frac{\pi}{2 x}\left(\sum_{n+1}^{\infty}\left|\Delta a_{k}\right|\right)$,
Consequently,
$\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left|f(x)-f_{n}(x)\right|^{p} d x \leq C \lim _{n \rightarrow \infty}\left(\sum_{n+1}^{\infty}\left|\Delta a_{k}\right|\right)^{p} \int_{0}^{\pi} x^{-p} d x=0$.

Since
$\int_{0}^{\pi} x^{-p} d x<\infty$ for $\mathrm{o}<\mathrm{p}<1$ and $\left\{a_{k}\right\}, \mathrm{k}=0,1, \ldots$, is a sequence of bounded variation.

This proves Theorem 2.
By considering $g_{n}(x)$ given by (1.4), and $g(x)=\lim _{n \rightarrow \infty} g_{n}(x)$ exist
Marzuq (2005), where $\left\{a_{n}\right\}$ is a sequence of bounded variation and
$\lim _{n \rightarrow \infty} a_{n}=0$ as $n \rightarrow \infty$.

We find that p has to be restricted to $\left(0, \frac{1}{2}\right)$. In this case we have the following result:

Theorem 3. Let $\left\{a_{n}\right\}, \mathrm{n}=0,1, \ldots$, be a sequence of bounded variation such that $a_{n} \rightarrow 0$
as $n \rightarrow \infty$. Then for $0<p<\frac{1}{2}$,
$\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left|g(x)-g_{n}(x)\right|^{p} d x=0$.

Proof. By partial summation (1.4) gives

$$
\begin{align*}
& g_{n}(x)=\frac{1}{2} \sum_{k=0}^{n} a_{k}+\sum_{k=1}^{n-1} a_{k} D_{k}(x)-\frac{1}{2} \sum_{k=1}^{n} a_{k}+a_{n} D_{n}(x) \\
& =\frac{1}{2} a_{0}+\sum_{k=1}^{n} a_{k} D_{k}(x) \tag{4.1}
\end{align*}
$$

Where $D_{k}(x)$ is give by (2.1).

Apply partial summation to the right side of (4.1). We get

$$
\begin{align*}
& g_{n}(x)=\frac{1}{2} a_{o}+\sum_{k=1}^{n-1}\left(\Delta a_{k}\right)(k+1) F_{k}(x)+a_{n}(n+1) F_{n}(x)-\frac{1}{2} a_{1} \\
& =\sum_{k=0}^{n-1}\left(\Delta a_{k}\right)(k+1) F_{k}(x)+a_{n}(n+1) F_{n}(x), \tag{4.2}
\end{align*}
$$

where

$$
F_{n}(x)=\frac{1}{n+1} \sum_{k=0}^{n} D_{k}(x)
$$

Since
$F_{n}(x) \leq \frac{C}{(n+1) x^{2}}, 0<\mathrm{x} \leq \pi$
Zygmund (1968) and $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, (4.2) gives

$$
\begin{equation*}
g(x)=\lim _{n \rightarrow \infty} g_{n}(x)=\sum_{k=0}^{\infty}\left(\Delta a_{k}\right)(k+1) F_{k}(x) \tag{4.4}
\end{equation*}
$$

Thus (4.2), (4.3) and (4.4) give

$$
\left|g(x)-g_{n}(x)\right| \leq \frac{C}{x^{2}}\left(\sum_{k=n}^{\infty}\left|\Delta a_{k}\right|+\left|a_{n}\right|\right)
$$

Raise both sides to the pth power and integrate over (0, π), and take the limit as is
$n \rightarrow \infty$. We obtain
$\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left|g(x)-g_{n}(x)\right|^{p} d x \leq C \lim _{n \rightarrow \infty}\left(\sum_{k=n}^{\infty}\left|\Delta a_{k}\right|+\left|a_{n}\right|\right)^{p} \int_{0}^{\pi} x^{-2 p} d x=0$, since $\int_{0}^{\pi} x^{-2 p} d x$ is finite for $0<\mathrm{p}<\frac{1}{2}$. This proves theorem 3.

We need the following inequality
$(a+b)^{p} \leq 2^{p}\left(a^{b}+b^{p}\right), \quad a \geq 0, \quad b \geq 0$,
for $0<\mathrm{p}<\infty$ Duren (1970).
Corollary 2. If $\left\{a_{n}\right\}, \mathrm{n}=0,1, \ldots$, is a sequence of bounded variation such that $a_{n} \rightarrow 0$
as $n \rightarrow \infty$, then $g \in L^{p}[0, \pi]$ for $0<\mathrm{p}<\frac{1}{2}$.
Proof. Write
$g(x)=g(x)-g_{n}(x)+g_{n}(x)$, then by inequality (4.5),
$|g(x)|^{p} \leq 2^{p}\left(\left|g(x)-g_{n}(x)\right|^{p}+\left|g_{n}(x)\right|^{p}\right)$.
By (4.2) and (4.3) we have
$\left|g_{n}(x)\right| \leq \frac{C}{x^{2}} \sum_{k=0}^{n-1}\left|\Delta a_{k}\right|+\frac{C}{x^{2}}\left|a_{n}\right|$.
Hence by using (4.5) again, (4.6) becomes
$|g(x)|^{p} \leq 2^{p}\left\{\left|g(x)-g_{n}(x)\right|^{p}+2^{p}\left[\frac{C}{x^{2 p}}\left(\sum_{k=0}^{n-1}\left|\Delta a_{k}\right|\right)^{p}+\frac{C}{x^{2 p}}\left|a_{n}\right|^{p}\right]\right\}$.
Thus
$\int_{0}^{\pi}|g(x)|^{p} d x \leq 2^{p} \int_{0}^{\pi}\left|g(x)-g_{n}(x)\right|^{p} d x+2^{p} C\left[\left(\sum_{k=0}^{n-1}\left|\Delta a_{k}\right|\right)^{p}+\left|a_{n}\right|^{p}\right] \int_{0}^{\pi} x^{-2 p} d x$
Let $n \rightarrow \infty$. Then by Theorem 3 and the hypothesis of the Corollary we conclude that
$\int_{0}^{\pi}|g(x)|^{p} d x \leq C\left(\sum_{k=0}^{\infty}\left|\Delta a_{k}\right|\right)^{p}<\infty$.
Thus $g \in L^{p}[0, \pi], 0<\mathrm{p}<\frac{1}{2}$.

ACKNOWLEDGMENT

The author is thankful to the referees for their wise comments, which have definitely improved the representation for the paper.

REFERENCES

Bary, NK. 1964. A Treatise on Trigonometric series, Vol. II, Pergamon Press, Oxford.

Boas, RP Jr. 1965. Quasi-positive sequences and trigonometric series, Proc. Lond. Math. Soc. (3)14A :3846.

Duren, PL. 1970. Theory of H^{p} Spaces, Academic Press, NY, USA.
Garrett, JW. and Stanojevic. 1975. On Integrability and L^{1} convergence of certain cosine sums, Notes Amer. Math. Soc. 22(A-166).
Garrett, JW., Rees, CS. and Stanojevic, CV. 1980. L^{1} - Convergence of Fourier series with coefficients of bounded variation, Proc. Amer. Math. Soc. 80:423-430.
Leindler, L. 2000. On the equivalence of class of numerical sequences, Analysis Mathematica (SzegedMoscow). 26:227-234.

Marzuq, M. 1975. L^{1} - Convergence of certain cosine sums, J. Univ. Kuwait (Sci) 2 :9-10.

Marzuq, M. 2005. Integrability theorems of trigonometric series, Toyama Math. J. 28:1-9.

Maher, MH. Marzuq. 1982. Properties of Functions on Bounded Star-Shaped Circular Domains in $C^{N}(N>1)$. Thesis, Department of Mathematics, State University of New York at Buffalo, New York, USA. 1-193.

Ram, B. 1977. Convergence of certain sums in the metric space L, Proc. Amer. Math. Soc. 66:258-260.

Telyakovskii, SA. 1973. Concerning a sufficient condition of Sidon for the Integrability of trigonometric series. Math. Notes. 14:742-748.
Telyakovskii, SA. 2000. A remark on condition for Integrability of trigonometric series. Moscow University Bulletin. 4:58-60(in Russian).

Zenei, SZA. 1990. Integrability of trigonometric series, Tamkang J. Math. 21:295-301.
Zygmund, A. 1968. Trigonometric Series, Cambridge Univ. Press, (vol. I \& II), New York, USA.

[^0]: *Corresponding author email: maher_marzuq@yahoo.com

