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ABSTRACT 

In this paper we obtain theorems concerning pL− space with p=1, 0 < p < 1 and 0 < p <
1
2

. We will redefine some 

theorem of Telyakovskii (1973) and Corollary of Marzuq (1975) as well as Corollary of Ram (1977). 
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 Garrett and Stanojevic (1975), Garrett et al. (1980).                                     
 
2. Statements of Results.  
 
Definition 1.   A sequence { na } is said to be of bounded 

variation if   
1
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a
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∆ < ∞∑ ,  where  1n n na a a +∆ = − . 

Definition 2.  A sequence { na } is said to be quasi-

monotone if 0 ; 0n na as n a→ →∞ >  ultimately 

and  n na δ∆ ≥ − , where { nδ } is a sequence of positive 
numbers Boas (1965). 
 
Definition 3.  A sequence { na }, n=1, 2…is said to 
satisfy condition S if   

(i)   0na as n→ →∞ , 

(ii)  there exist a numbers nA such that { nA } is 
monotonically decreasing to 0 and  
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(iii)  n na A∆ ≤ for all n. 
 
Telyakovskii (1973). 
 
Throughout this paper C denotes a positive constant, not 
necessarily the same at each occurrence.   
 
We introduce the following definition.  
 
Definition 4.  A sequence { na }, n=1,2,……is said to 
satisfy condition T if 
 
(i) 0na as n→ →∞ , 

(ii) there exist nA n=1,2,….such that { nA }, is a δ quasi-

monotone sequence and
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(iii) n na A∆ ≤ ultimately.  
Marzuq (1982)  
 
Independently Zenei (1992) considered the class ( )S δ , 
later it is proved by               
 
Leindler (2000) and Telyakovskii (2000), the classes S,T 
and ( )S δ are identical. 
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We prove:  
 
Theorem 1.   If{ }na belongs to the class T, then 

( )nf x converses to ( )f x in 1L− norm. 
 
Proof. Let /N N> . Then by (1.3)  
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Zygmund (1968). 
 
We have 
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Since{ }na T∈ , it follows that,  
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Theorem 2.   Let{ }na T∈ . Then mf f→ in 1L− norm. 
Proof. Using partial summation on the right of (2.3) We 
get 
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Now,   by partial summation in the second term in (1.2) 
we obtain 
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By  applying  partial  summation again we have for 
m+1≤  n  
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Then for  k   sufficiently large   1kα ≤ ,   since   

{ }ka T∈ .     
 
 Hence for m sufficiently large (2.6) gives 
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By the definition of condition T and Telyakovskii (1973), 
we have  
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Let n →∞ , then by Boas (1965) with 1γ =  
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so that Fatou’s lemma implies  
 

10
1 1
( ) ( ) ( 1) ( 1)k k k m

m m
a D x dx C A k A m

π ∞ ∞

+
+ +

⎡ ⎤
∆ ≤ ∆ + + +⎢ ⎥

⎣ ⎦
∑ ∑∫

 (2.7) 
Now for sufficiently large m, (2.4), (2.5) and (2.7) give 
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Boas (1965). 
Thus mf f→ in 1L norm− . 
 
3. Generalization of Telyakovskii Theorem.  In view of 
the identity 
 

1( ) ( ) ( )n n n nf x S x a D x+= − ,  (3.1) 
 
where ( )nS x is give by (1.3) and nf is given by (1.2) 
Marzuq (1975), we deduce the  
 
following Corollary which is a part of Theorem 4 of               
 
Telyakovskii (1973), Corollary of Marzuq (1975), and 
Corollary of Ram (1977). 
 
Corollary 1.     Let  { }na T∈ .  Then  (1.3) converses in 

1L norm− to (1.1) if and only if   
 

log 0na n →  as n →∞ . 
 
Proof.   Let log 0na n →  as n →∞ .  Then by (3.1)  
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It follows that nS f→ 1L norm− . 

Conversely, assume that nS f→ in 1L norm− , then 
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Therefore (3.2) and the above result imply that 

log 0na n →  as n →∞ . 
 
This proves Corollary 1. 
 
4. Conversance.   In the space (0 1)pL p< < .  We have 
the following theorem: 
 
Theorem 2. Let{ }na , n=0,1,…, be a sequence of bounded 

variation such that 0na →  as  
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Proof of Theorem 2.  From (2.4) and (2.5) we have  
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sequence of bounded variation.   
 
This proves Theorem 2. 
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We find that p has to be restricted to (0, 
1
2

).  In this case 

we have  the following result:  
 
Theorem 3.    Let { }na , n = 0,1,…, be a sequence of 

bounded variation such that 0na →   

as n →∞  .  Then for 0 < p < 
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We need the following inequality    
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for  0 < p < ∞  Duren (1970).   
 
Corollary 2.   If { }na , n = 0, 1, …, is a sequence of 

bounded variation such that 0na →  
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Let n →∞ .  Then by Theorem 3 and the hypothesis of 
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