SENRA Academic Publishers, Burnaby, British Columbia Canadian Journal of
Vol. 5, No. 3, pp. 1707-1711, October 2011 i
Online ISSN: 1920-3853; Print ISSN: 1715-9997 sciences

SHORT COMMUNICATION
ANOTE ON | " CONVERGENCE OF CERTAIN COSINE SUMS

Maher MH Marzuq
84 Raymond Road. Plymouth, Massachusetts 02360, USA

ABSTRACT
1
In this paper we obtain theorems concerning L” space with p=1, 0 <p <1 and 0 < p <E. We will redefine some

theorem of Telyakovskii (1973) and Corollary of Marzuq (1975) as well as Corollary of Ram (1977).
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INTRODUCTION

Write

f(x): a?°+2ak cos kx ,

k=1

1.1)

f,(x) :%iAak +300 Aay) cos kx ,(12)
k=0 k

k=l j=

N

Sy (X):a_o+zak cos kx (1.3)
2 i3

gn(X):iZak +> (D a;)coskx (1.4)
2i% k=L j=k

Garrett and Stanojevic (1975), Garrett et al. (1980).

2. Statements of Results.
Definition 1. A sequence { &, } is said to be of bounded

variation if Z|Aan|<oo, where Aa, =a, -4, ;.
n=1

Definition 2. A sequence { &, } is said to be quasi-

monotone if &, -0 as n—>o ; a, >0 ultimately

and Aa, >-9,, where { J,} is a sequence of positive

numbers Boas (1965).

Definition 3. A sequence { a,}, n=1, 2...is said to
satisfy condition S if

*Corresponding author email: maher_marzug@yahoo.com

(i) a, >0asn—>owo,
(i) there exist a numbers A such that {A_} is
monotonically decreasing to 0 and

ZAn <00 is convergent,
n=1

(iii) |Aa,| <A, foralln.

Telyakovskii (1973).

Throughout this paper C denotes a positive constant, not
necessarily the same at each occurrence.

We introduce the following definition.

Definition 4. A sequence { @, }, n=1,2,...... is said to
satisfy condition T if

(M a, >0as n—oo,
(ii) there exist A, n=1,2,....such that { A }, is a O quasi-

o0 o0
monotone sequence and z n5n s ZAn converge,
n=1 n=1

(iii) |Aa,| <A, ultimately.
Marzug (1982)

Independently Zenei (1992) considered the class S(9),
later it is proved by

Leindler (2000) and Telyakovskii (2000), the classes S,T
and S(0) are identical.
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We prove: 1
since Dy(X)= 7 Then by (2.2) and Definition 4i, we
Theorem 1.  If{a, }belongs to the class T, then get
f_(x)conversesto f (x)in L' norm. >
" f (X):Z(Aak)Dk (x). (2.4)
k=0
Proof. Let N/ >N . Then by (1.3)
Now, by partial summation in the second term in (1.2)
N/ we obtain
‘SN,(X)—SN (x)‘z > a cos kx|,
k=N +1 m
fo(x)=> (Aa,)D, (x). (2.5)
k =0

and by partial summation,

Nf (A3, )D, (x)—ay ,Dy (x)+a,,D,, (x)

k=N +1

Where D, (X) is given by

S, () =Sy (x)]=

1 sin(n +1)x
D, (x) ==+ cos kx :7§( 21)
2 ia 2 sin—
2
Zygmund (1968).
We have
/4
D, (X)|<——forx>0, (2.2)
2X

Bary (1964). Therefore forx.>0and N/,N >N 0(€),

N/

‘SN,(X)—SN (x)‘s%{zlmak|+|aN+1|+‘aN,‘]
N +1

Since{a, } €T , it follows that,

‘SN,(X)—SN (X)‘<e forN, N/ >N ;(€)and x> 0.
Thus

f (x)zhllim Sy (x) (2.3)
exists for X € (0, 7].

Theorem 2. Let{a }€T . Then f  —f in L norm,

Proof. Using partial summation on the right of (2.3) We
get

f(x)= Jiﬂ{z‘H’E(Aak)Dk (x)+a, D, (X)_;ai}

 lim le(Aak )D, ()+3, Dy (x)}

By applying partial summation again we have for

m+1< n

3 (480D, () = 3 (AT, () + AT, (X)— Ay T (X)

m+1 m+l

(2.6)
5 Aa,
where T, (X)= Z D, (x)Marzug ~ (1975)
k =1 Ak
Aa,
Take o, =
k
Then for k  sufficiently large |ak | <1, since
{ak } el .

Hence for m sufficiently large (2.6) gives
[ ‘i(Aak)Dk (x )Fx < SR O+ A, [T, G0 + A [T 00K

By the definition of condition T and Telyakovskii (1973),
we have

I

Let N — oo, then by Boas (1965) with y =1

i(Aak)Dk (X)FX <C {EAAK |k +D+A (N+D+A (M +l)}

m+1 m+1

Lim .[7!
n — o0

3" (4a,)D, (x)Fx <c {iAAk Ik +1)+ A, ,(m +1)}

m+1

so that Fatou’s lemma implies

J
2.7
Now for sufficiently large m, (2.4), (2.5) and (2.7) give

3" (Aa,)D, (X)Fx <C [iAAk (K +1)+ A, 4 (m +1)}

m+1 m+1
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jo”\f (x)—f, (x)|dx :jo
and consequently,

I!inlj'oﬂ\f (x)—f, (x)dx <C !lnl{ i |AA, | (k +1)+(m +1)Am+1}=0

=m+1

m—oo

since Z(k +1)|AAk|<oo and lim mA_ =0, by
k=1

Boas (1965).
Thus f  —f inL"nom .

3. Generalization of Telyakovskii Theorem. In view of
the identity

f.(x)=S,(x)-a,,, D, (x), (3.1)

where S (X)is give by (1.3) and f  is given by (1.2)
Marzuq (1975), we deduce the

following Corollary which is a part of Theorem 4 of

Telyakovskii (1973), Corollary of Marzug (1975), and
Corollary of Ram (1977).

Corollary 1. Let {a,}€T . Then (1.3) converses in

L' norm to (1.1) if and only if
a,logn -0 asn > .
Proof. Leta, logn — 0 as n — 0. Thenby (3.1)

jo”\f (x) =S, (x)|dx =< jo”\f (x)—f, (x)px +j0”\fn(x)—sn(x)px

= J.0”|f (X ) —f n (X )|dX +|an+l|J.0”|Dn (X )pX

SJ.0”|f (x)—f,0x)[dx +Ca, ,[logn .

Since

'[”|Dn(x)hx ; gIogn 3.2)
0 T

Zygmund (1968), then by the assumption, a, logn and
Theorem 1.
It follows thatS, —>f L*norm .

Conversely, assume that S, —f in L'norm , then
(3.1) implies that

3" (Aa,)D, (x)FX <C [i\AAK\(k FD4A L maD)| o 1D, 00]dx=[7]1,00-S,000x < [T £ 00—, 00ldx+ [ £ ) - £, (0],

and hence the hypothesis on a, lognand Theoreml
imply that

I0”|a”+1||Dn (X )|dX —0 asn > .

Therefore (3.2) and the above
a,logn >0 asn > .

result imply that

This proves Corollary 1.

4. Conversance. Inthe space L” (0 < p <1). We have
the following theorem:

Theorem 2. Let{a, }, n=0,1,..., be a sequence of bounded

variation such that 8, — 0 as
N —oo. Thenfor O<p<1.

mjo If (x)—f,(x)dx =0.
Proof of Theorem 2. From (2.4) and (2.5) we have

[ ) =f,(x)|=

00

zmak)Dk(x)\,

n+l

so by (2.2) forx > 0

L (x)—fn(x)|s£(i|Aak |J,

n+l
Consequently,

» p
lim [[f (x)-f,(x) dx <C Iim[ZAak J [xPdx =0-
n—ow n—o nal

Since

IO”X “Pdx <oo foro<p<land{a }, k=041,..., isa

sequence of bounded variation.

This proves Theorem 2.

By considering g, (X)

g(x)=Ilimg, (x)exist
n—oo

Marzug (2005), where {a,} is a sequence of bounded

variation and
lima, =0asn—ow.

n—oo

given by (1.4), and
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1
We find that p has to be restricted to (0, E ). In this case

we have the following result:

Theorem 3. Let {a,}, n =0,1,..., be a sequence of

bounded variation such that a, — 0

1
asn — oo . Thenfor0<p<§,

. i P
lim [ |9 (x)~g, ()| dx =0.

Proof. By partial summation (1.4) gives

1 n n-1 1 n
9, (x)==>a +>.aD (x)-=> a +a,D,(x)
2k:O k=1 2k:l

1 n
=>a,+>. 3D, (x), (4.1)
2 7 ia

Where D, (X) is give by (2.1).

Apply partial summation to the right side of (4.1). We get

9,(x) =33, + 3. (43, )k +DF, ()+3, (1+DF, (x) - Za

n-1
=Y (Mg )k +)F, (x)+a,(n+DF,(x), (4.2)
k=0
where
1 n
F =—>»D .
n(X) n+lé k(X)
Since
F(X)SL,O<XS7Z' (4.3)
" (n +1x?

Zygmund (1968) and @, — 0 as N — o0, (4.2) gives

g()=1limg, (<) =3 (A8, )(k +DF, (x).(44)

k=0

Thus (4.2), (4.3) and (4.4) give

900-9,00]=- (X 18, [+]a,)).

Raise both sides to the pth power and integrate over (O,
), and take the limit as is

n — oo . We obtain

tim |90 - 9,00] dx<Clim(3[aa,] +[a,) [ x**dx =0,
nN—o0 N— ken

Pt 1
since IO X ~2PdX is finite for 0 < p < E This proves
theorem 3.

We need the following inequality

(a+b)? <2°(@ +b"), a>0, b>0, (5

for 0 <p < oo Duren (1970).

Corollary 2. 1f {a,},n=0, 1, ...

bounded variation such that 8, — 0

, IS a sequence of

b 1
as N —oo, theng eL" [0, 7 ] for O<p<§.

Proof. Write

g(x)=9(X)-9,(x)+g,(x), then by inequality
(4.5),

p p p
lg(x)| <2°(g(x)-g,(x)| +|g,(x)| ). @6)
By (4.2) and (4.3) we have

n-1

C C
9, 00| <=7 2 [Aa[+—Za .
X% X
Hence by using (4.5) again, (4.6) becomes

p p Cc ot P C
o092 {Ja0 0,00+ 2655 (o) "+ 1.
Thus
[Tlo o] dx <2° | () -g, ()] dx +2pC[(n§\Aak D"+l 1] x 2Pk

Let N — oo. Then by Theorem 3 and the hypothesis of
the Corollary we conclude that

T p x p
jo lg(x)| dx < (OlJaa]) <.
k=0

Thus GLp[O,ﬂ'],0<p<%.
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