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ABSTRACT

We aimed at studying the propagation of Love waves through the crustal layer of earth in the presence of thin surface
impedance. The Wiener-Hopf technique and Fourier transform have been used to find the reflected and scattered Love
waves. Numerical computation has been done and analysis of results shows the approximate behavior of reflected and
scattered waves. It has been observed that both the material and the thickness of the impeding surface affect the
propagation of incident waves. The scattered waves have a logarithmic singularity at the tip of scatterer and behave as a
decaying cylindrical wave at distant points, dying out at long distances.
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INTRODUCTION

Seismic waves are the waves that cause natural disaster
like earthquake, tsunami etc. and are responsible for a lot
of destruction. The seismic signals are also applied to
investigate the internal structure of earth and they can be
used in exploration of valuable materials like mineral, oil,
water etc. The mathematical analysis of reflected and
scattered waves due to thin uniform distribution of matter
in surface layer has been discussed herewith. The
discontinuity is present in the half of the surface
(z=-H, x<0) and the other half of the surface

(z=-H, x>0) is free surface. The effect of

distribution of matter is such that it exerts surface traction
proportional to the acceleration in a direction
perpendicular to the vertical plane through the direction of
propagation.

The model finds its applications in understanding the
internal composition of crustal layer of earth. Deshwal
and Gogna (1987) have considered the problem of
diffraction of compressional waves due to surface
impedance. The similar type of problems for Rayleigh
waves have also been discussed by Gregory (1966).
Tomar and Kaur (2007), and Chattopadhyay et al. (2009)
have studied the SH-waves in different media. Saito
(2010) have studied the excitation of Love waves due to
the interaction between propagating ocean wave and sea
bottom topography. Here we propose to discuss the
propagation of Love waves through a layered structure in
the presence of impeding surface. The reflected and
scattered waves are obtained to study the internal
structure of earth.
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MATERIALS AND METHODS

The problem is being analyzed in zx-plane. The z-axis has
been taken vertically downwards and x-axis along the
interface between the layer of thickness ‘H’ and the solid
half-space z > 0 .The half of the surface
(z=-H, x<0) contains the thin impeding material

and the other half is free surface. A time harmonic Love
wave is incident on the impeding surface from the

side X > 0. The geometry of the problem is shown in

figure 1. The displacements for the incident Love wave
are given by

Vo1 = Ac0s G, He st -7 >0 (1)
~H<z<0. (@

—ikyn X
1

Voo = AC0sE, (z+H)e
where,

O =\/k22 _k12Nv
On =\/k12N _k12 ' |k1|<|k2| 3

and K, isarootof the equation

tan 0, H =y 00 and =5 0 @

2N 2 C1N
o and gz, (14> 1,)being the rigidities of shear
waves in the half space and in the crustal layer
respectively and C,, represents the phase velocity of

Love waves of N™ mode in a layered structure with a
surface layer having a thickness H.
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Fig.1. Geometry of the problem.

The wave equation in two dimensions is given as
ou d'u 10U g au
2T e T i A T2 A
ox® o01° c°ot° ¢ oot

(5)

where & >0 is the damping constant and ¢ is the
velocity of propagation. If the displacement be harmonic
in time, then

u(x, z,t) = v(x,z)e ™ (6)
and equation (5) reduce to
o%v v K2 0 -
—+—+Kk"v=0.
ox?  o1°
The wave equation in present study is written as
2 2 _ s
(Vo+kj)v; =0, j=12 (8)
where,
2 -
o +1Ew )
k; = VE :kj“k":? 9)

V,andV, (V, >V,)are respectively the velocities of

shear waves in the half space z>0and in the layer
-H<z<0.

Let the total displacement be given by

V=vy,+v;, 220 , o< X<, (10)
=V, +V,, —H<z2<0 , —o<X<o. (11)
The boundary conditions are
ov.
(i) y7A azzav, Xx<0, z=-H. (2
yA

iy 22_0 x>0, z=-H, (13)
oz

iy v, =v M, O
1 2y My oz 275,
=0, —o<X<o0, (14)

In condition (12), ‘a’ is the constant depending upon the
nature of material of the impeding surface. The boundary
condition (13) represents the physical situation that at
each point of the surface there is a resisting force
proportional to the velocity along the normal to the
vertical plane through the direction of propagation.

Taking Fourier transform of equation (8), we obtain
2_
d*v;(p,2)
dz?

where 6, =+/p° —ka and v, (p,Z) represents

Fourier transform of v/, (p,z) which can be defined as

- 027, (p.2) =0, (15)

0

v, (p,2)= _[Vi (x,2)e™dx, p=a+ip

—00

0 o)
= jvj (x, 2)e"™dx + jvj (x,z)e™dx
—0 0

7, (p.2)+7,(p.2). (16)
If for a given 2z, a |X|>o© and
M.z>0, [v,(x.2)|-Me "X then 7 (p,2)is
analytic in g >-rand v, (p,z) is analytic
inB<z(=Im(k;)). By analytic continuation,

v, (p,z)and its derivatives are analytic in the strip
—7 < <7 inthe complex p-plane. Solving equation

(15) and choosing the sign of 6’j such that its real part is

always positive, we find

7(p.2)=A(p)e %%, 20 (17)
and

o, 0,1

Z+C(p)e , —-H<z<o0. (18)

v,(p,2)=B(p)e
Solving equations (17) and (18) by using boundary
condition (14), we get
7. (p.2) = A(p) [, coshtsizzgye1 sinh 6, z] (19)
2
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7 (p.2) =7 (p0)e A7 @)  Gy(p)= ot Pl (29)
Differentiating equations (19) and (20) with respect to Z anl( P™— P2n)
and putting Z=—H and denoting v;(p,—H) by  Further, we write
_ G,
V;(p) etc., eliminating A(p) using conditions (12) and ~ P(p) = s ((p)) G,(p)G_(p) (30)
(13), we obEﬂin( o on where.
V2'+ p = ® _ Ky
and logG, (p) == SNz gr_Lf Mi=Ms g
_ T t—1p T t+p
v; (p) =2V aA (22) B ’
2- . 2
H; i1, (P =Ky ) _1 idt, (31)
Adding equations (21) and (22), we find 7 t+p
av. aA and
V;(P) =V, (P)+V;.(P) =—"+- (23) e
2 2 2 1 I/u’z(p_klN) tan Nl _ a'cosa'H ,
Now, from equation (19), we have y(t? + kz)% sina'H
_ 0, cosh&,z—y0, sinh6,z _
,7) = (24) %
v, (p,2) @cmh@H+y@smmaH”(m an N, 70 +kp)? wsaH’
Differentiating equation (24) with respectto Z and “"S'n @ H
putting z = —H and denoting i7; (p,— H) by i (p), tan M, = a”cosg"H ,
we obtain 7(k2—t2)%5in a"H
_ 6,(0,sinh6,H + y6, coshé, H), (25) 2 oY "
V) = cosha H + 0, simhg, i 2P tan M, _ 7k ~t")cosa"H ,
Using equations (23) and (25), we find a"sinag"H
= t°+kZ and o =,/kZ —t°.
av, N aA 2 2
e L (p—ky) Hence, we write
6, (6, sinhg,H + y6, coshd, H), o
= 26 p p
6, cosh@, H +y6, sinh6, H :(P) (29) L(p) =[] o2 ———G.(p)G_(p) (32)
n=1 - 2n
The equation (26) is Wiener-Hopf type differential where,
equation whose solution will give the reflected and = p xp,
scattered waves. Now, we write L.(p) = H WGi (p) (33)
n=1 — M2n

f, (p) _b coshé, H +y6, sinhd,H 27)
f,(p) &,sinhg,H +y6, coshg,H

where L(p) tends to 1 as |p| tends to infinity. So, by
infinite product theorem (Noble, 1958), L(p) can be
factorized. If p=+p,, and p==£p,, are the zeros

L(p)=

of f, (p)and f, (p)respectively, then we write (Sato,
1961)

L(p) _|fp P =P |Gilp) (28)
f, (p) hl N—p;}GAm

where

Gy(p)= = P and

Decomposition of equation (26) results into the equation

L, ok 7, ok —py )+

L(p) { A }a
Jp—k, | 7 i(p—ky) |1

L.(p)

:_V_Z+ \/p+k2 _1727(— p1n)\jk2_ Pin (34)
L. (p) L.(p)

There is a pole at p =Ky, and branch pointat p = £k, .

Hence the left hand member of equation (34) is analytic in

B < (= Im(k,)) and the right hand member is analytic

in the region g > —¢ (The contour of integration is

shown in figure 2). Therefore, by analytic continuation
they represent an entire function in the strip
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-7 < B <7 . Hence, by Liouville’s theorem, each
member in (34) has a constant value - c.

4 Imip)

Fig. 2. Contour of integration in complex p- plane

Hence, we write

a | A
— - _ = " 35
P e, _V”i(p—km)}(p) >
where,
172_ :M c—cL (p) AaL( p) :| (36)
;1292+aL(p)_ i (p— kiN)\/p k

The displacement v, (X, z) is obtained by inversion of

Fourier transform as given below
o+iff

[7,(p.2)e™dp

—o0+iff

1 ”*iﬂ{ 6, cosh 8,z — 6, sinh 6,z }

vy(X,2) =—

27 6, sinh 6,H + y 6, cosh 6,H

—oo+if

{7, (p)+7, (p)Je™dp, (37

where V,(p) is given in equation (35).

RESULTS AND DISCUSSION

The incident Love waves are scattered when these waves
encounter with surface irregularities like impeding surface
in the layer. For finding the scattered component of the
incident Love waves, we evaluate the integral in equation

(37). There is a branch point p = —k2 in the lower half-
plane. For contribution around this point we put
p =—K, —it, t being small. The branch cut is obtained

by taking Re(8,)=0. Now 87 = p> -k should be

negative, so @, = £id,, 0, = \/t* + 2k,t .0, = £i0,

and @, = \/(k, +it)* —k? . The imaginary part of ¢,
has different signs on two sides of the branch cut.

Integrating equation (37) along two sides of branch cut,
we get

Vou(%2) = 1 T [{\72 (p Z)}g2 =i, ~ {\72 (p.2) }92 —id, ] e et

__ac kzlef(t) cos A/t2 + 2Kt (z + H)

Jt2 + 2kt
w(t) sin \t? + 2kt (z+ H) | o tX(t (38)
V2 + 2kt

where,

g(t)_(e ,cos G,H + ¥ 0,sin 6, H)H (39)
1,0, +an(t)

V/(t):H_z(H_Zsm HZH_—ychosa_zH)@ (40)
1,0, +an(t)

and

n(t) = 0, cos 9,H + y ,sin 6,H , (41)
-0, sin O,H + y 6, cos O,H

where 9, = \[—i(2k, +1) .

For evaluation of integral in equation (38), we retain
£(0) and y (0) onlyas ‘t" is small. Now, we write

ot T cos4t’ + 2kt (z+ H) o
K,(k;r) =e j dt (42
0 i +2kt

where K, is the modified Hankel function of zero order

and r =/x?+(z+H)® is the distance from the

scatterer. Hence, equation (38) is written as

Voa (X, z)_—{f(O)K (K, r)+y/(0)jK (K;s)du | (43)
where,
éZ(O):,/2|<;(1+y¢91'H)yel'e"? 4a)

a(l+y O H) + 1,76,

2k, (72‘91'2)941 (45)

al+yOH)+ u,y 6

y(0) = -

and 6, = k2 —kZ, s= x>+ (t+H)>. (46)
Equation (43) gives the scattered wave due to surface
impedance in layer— H <z <0. It is clear from the
result that if there is no impedance on the surface i.e. a=0,
the scattered waves are absent and we have only the
incident Love waves.
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For finding the reflected component, we evaluate the
integral in equation (37) in upper part g > —r of the
complex plane. In order that the integral along the contour
at infinity vanishes in the region X < 0, the contribution
due to the pole at p =Ky, is given by

Voo =—AC0S O,y (z+ H)e " (47)

which cancels the incident wave. Now we find the
reflected component of Love wave of N" mode. So
consider the equation

L(p) = _ M0
a

0, cosh 6,H +y 6, sinh ,H _ u,0, (48)

0, sinh 6,H + y6, cosh 6,H a
Let k,, (N =1,2,3,......... ) be the roots of equation (48)
which may also be written as
tan 0,,0 = y 01, , Where 6 = H - h (49)

HZN

and 0;, = ki —ki, and 6, = kG, kI (50)

The impeding surface behave as a surface layer and the
polesat p = k,, (N =1,2,3,.....) contributes to

v (X Z) —_ agz C(L+(k2N)_1) _ A
2 oSO | Jk,+Kyy (Ko —Kin)
! —ik,y X
. Cos O, (z+0)e (51)

G(kyy)
Equation (51) gives the reflected wave of N™ mode due to
surface impedance in layer — H < z < 0 . Itisalso clear
from the result that if there is no impedance on the surface
i.e. a=0, the reflected waves are absent and we have only
the incident Love waves.The numerical computation has
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Fig. 3. Group and Phase velocities of Love waves.

been done by considering the value of k,s5 very small i.e.

the width of impeding surface is very small as compared
to the wavelength of the wave. For calculation purpose,
we have taken z=-H, k,, =k,V, = 4.6km./s,

V, =3.9km./s, u, =7.98x10" Pa,k,5 < 0.01

1, = 4.11x10% Pa. Also for small

r, Ko(kr)=logz-logr—-k, and for Ilarge
—k,r

r, K,(k,r) = € . which gives the idea of the
Jr

behavior of the scattered waves at different distances from
the scatterer. Figure 3 shows the phase and group
velocities of the Love waves in the layered structure while
the variation of amplitude versus phase velocity of
reflected waves is shown in figure 4.

CONCLUSIONS

The analysis of results shows that the impeding surface
affect the propagation of Love waves through the layered
structure. The discussion specifies that, it is not only the
type of material that affects the propagation but thickness
of impeding surface also plays an important part. We have
derived the approximate solution for the case that the
thickness of impeding surface is small compared with
wave-length, leaving the solution for larger thickness in
future. The scattered waves have a logarithmic singularity
at the tip of scatterer and behave as decaying cylindrical
waves at large distances from the scatterer, dying out at
very large distances. This fact may be used in predicting
the internal structure of earth to some extent by measuring
the form of scattered waves at a particular place. The plot
of amplitude versus phase velocity of the reflected waves
shows that the amplitude decreases as the phase velocity
increases but it reduces to zero after a very long time,
which explain the reason why Love waves cases large
scale destruction during earthquake.

Armplitude

1
4 41 42 43 4.4 45 46

3 1 1
Phase Velocity
Fig. 4. Amplitude versus Phase velocity.
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