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ABSTRACT 
 

We aimed at studying the propagation of Love waves through the crustal layer of earth in the presence of thin surface 
impedance. The Wiener-Hopf technique and Fourier transform have been used to find the reflected and scattered Love 
waves. Numerical computation has been done and analysis of results shows the approximate behavior of reflected and 
scattered waves. It has been observed that both the material and the thickness of the impeding surface affect the 
propagation of incident waves. The scattered waves have a logarithmic singularity at the tip of scatterer and behave as a 
decaying cylindrical wave at distant points, dying out at long distances. 
 
Keywords: Wiener-Hopf technique, scattered waves, seismic waves, surface impedance. 
 
INTRODUCTION 
 
 Seismic waves are the waves that cause natural disaster 
like earthquake, tsunami etc. and are responsible for a lot 
of destruction. The seismic signals are also applied to 
investigate the internal structure of earth and they can be 
used in exploration of valuable materials like mineral, oil, 
water etc. The mathematical analysis of reflected and 
scattered waves due to thin uniform distribution of matter 
in surface layer has been discussed herewith. The 
discontinuity is present in the half of the surface 
( 0, <−= xHz )  and the other half of the surface 

)0,( >−= xHz  is free surface. The effect of 
distribution of matter is such that it exerts surface traction 
proportional to the acceleration in a direction 
perpendicular to the vertical plane through the direction of 
propagation. 
 
The model finds its applications in understanding the 
internal composition of crustal layer of earth. Deshwal 
and Gogna (1987) have considered the problem of 
diffraction of compressional waves due to surface 
impedance. The similar type of problems for Rayleigh 
waves have also been discussed by Gregory (1966). 
Tomar and Kaur (2007), and Chattopadhyay et al. (2009) 
have studied the SH-waves in different media. Saito 
(2010) have studied the excitation of Love waves due to 
the interaction between propagating ocean wave and sea 
bottom topography. Here we propose to discuss the 
propagation of Love waves through a layered structure in 
the presence of impeding surface. The reflected and 
scattered waves are obtained to study the internal 
structure of earth.                                                                                 

MATERIALS AND METHODS 
 
The problem is being analyzed in zx-plane. The z-axis has 
been taken vertically downwards and x-axis along the 
interface between the layer of thickness ‘H’ and the solid 
half-space 0≥z .The half of the surface 
( 0, <−= xHz ) contains the thin impeding material 
and the other half is free surface. A time harmonic Love 
wave is incident on the impeding surface from the 
side 0>x . The geometry of the problem is shown in 
figure 1. The displacements for the incident Love wave 
are given by  
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21 µµ and  )( 21 µµ > being the rigidities of shear 
waves in the half space and in the crustal layer 
respectively and NC1 represents the phase velocity of 
Love waves of Nth mode in a layered structure with a 
surface layer having a thickness H.  
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Fig.1. Geometry of the problem. 
 
The wave equation in two dimensions is given as                    
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where 0>ε  is the damping constant and c is the 
velocity of propagation. If the displacement be harmonic 
in time, then 
               ),,( tzxu  = tiezx ων −),(     (6) 
and equation (5) reduce to     
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The wave equation in present study is written as 
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)( 2121 VVVandV > are respectively the velocities of 
shear waves in the half space 0≥z and in the layer 

0≤≤− zH .           
 
Let the total displacement be given by 
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In condition (12), ‘a’ is the constant depending upon the 
nature of material of the impeding surface. The boundary 
condition (13) represents the physical situation that at 
each point of the surface there is a resisting force 
proportional to the velocity along the normal to the 
vertical plane through the direction of propagation. 
 
Taking Fourier transform of equation (8), we obtain 
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Fourier transform of ),( zpjν   which can be defined as   
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in )).(( jklm=<τβ  By analytic continuation, 

),( zpjν and its derivatives are analytic in the strip  

τβτ <<−  in the complex p-plane. Solving equation 

(15) and choosing the sign of jθ  such that its real part is 
always positive, we find 
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condition (14), we get 
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Differentiating equations (19) and (20) with respect to z  
and putting Hz −=  and denoting ),(, Hpj −ν  by 

)(, pjν  etc., eliminating A(p) using conditions (12) and 
(13), we obtain 
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Now, from equation (19), we have 
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Differentiating equation (24) with respect to z  and 
putting Hz −=  and denoting ),(,
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Using equations (23) and (25), we find 
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The equation (26) is Wiener-Hopf type differential 
equation whose solution will give the reflected and 
scattered waves. Now, we write 
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where L(p) tends to 1 as p  tends to infinity. So, by 
infinite product theorem (Noble, 1958), L(p) can be 
factorized. If npp 1±=    and  npp 2±=  are the zeros 

of )(1 pf and )(2 pf respectively, then we write (Sato, 
1961) 
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Decomposition of equation (26) results into the equation 
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There is a pole at nkp 1=  and branch point at 2kp ±= .  
Hence the left hand member of equation (34) is analytic in  

))Im(( 1k=< τβ  and the right hand member is analytic 
in the region τβ −> (The contour of integration is 
shown in figure 2). Therefore, by analytic continuation 
they represent an entire function in the strip 
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τβτ <<− . Hence, by Liouville’s theorem, each 
member in (34) has a constant value   - c. 

 
 
Fig. 2. Contour of integration in complex p- plane 
 
Hence, we write 
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The displacement ),(2 zxν  is obtained by inversion of 
Fourier transform as given below 
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where )(2 pν   is given in equation (35). 

 
RESULTS AND DISCUSSION     
 
The incident Love waves are scattered when these waves 
encounter with surface irregularities like impeding surface 
in the layer. For finding the scattered component of the 
incident Love waves, we evaluate the integral in equation 
(37). There is a branch point 2kp −=  in the lower half-
plane. For contribution around this point we put 

titkp ,2 −−=  being small. The branch cut is obtained 

by taking .0)Re( 2 =θ  Now 2
2

22
2 kp −=θ  should be 

negative, so tkti "
2

2
222 2, +=±= θθθ , 11 θθ i±=  

and 2
1

2
21 )( kitk −+=θ . The imaginary part of 2θ   

has different signs on two sides of the branch cut.  
Integrating equation (37) along two sides of branch cut, 
we get 
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For evaluation of integral in equation (38), we retain 

)0(ξ   and  )0(ψ  only as ‘t’  is small. Now, we write 
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where 0K  is the modified Hankel function of zero order 

and 22 )( Hzxr ++=  is the distance from the 
scatterer. Hence, equation (38) is written as 
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Equation (43) gives the scattered wave due to surface 
impedance in layer 0≤≤− zH . It is clear from the 
result that if there is no impedance on the surface i.e. a=0, 
the scattered waves are absent and we have only the 
incident Love waves. 
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For finding the reflected component, we evaluate the 
integral in equation (37) in upper part τβ −>   of the 
complex plane. In order that the integral along the contour 
at infinity vanishes in the region 0<x , the contribution 
due to the pole at Nkp 1= ,  is given by 
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which cancels the incident wave. Now we find the 
reflected component of Love wave of Nth mode. So 
consider the equation 
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The impeding surface behave as a surface layer and the 
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Equation (51) gives the reflected wave of Nth mode due to 
surface impedance in layer  0<<− zH . It is also clear 
from the result that if there is no impedance on the surface 
i.e. a=0,  the reflected waves are absent and we have only 
the incident Love waves.The numerical computation has 

been done by considering the value of δ2k  very small i.e. 
the width of impeding surface is very small as compared 
to the wavelength of the wave. For calculation purpose, 
we have taken 21, kkHz N =−= ,/.6.41 skmV =  

01.0,1098.7,/.9.3 2
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behavior of the scattered waves at different distances from 
the scatterer.  Figure 3 shows the phase and group 
velocities of the Love waves in the layered structure while 
the variation of amplitude versus phase velocity of 
reflected waves is shown in figure 4. 
 
CONCLUSIONS 
 
The analysis of results shows that the impeding surface 
affect the propagation of Love waves through the layered 
structure. The discussion specifies that, it is not only the 
type of material that affects the propagation but thickness 
of impeding surface also plays an important part. We have 
derived the approximate solution for the case that the 
thickness of impeding surface is small compared with 
wave-length, leaving the solution for larger thickness in 
future. The scattered waves have a logarithmic singularity 
at the tip of scatterer and behave as decaying cylindrical 
waves at large distances from the scatterer, dying out at 
very large distances. This fact may be used in predicting 
the internal structure of earth to some extent by measuring 
the form of scattered waves at a particular place. The plot 
of amplitude versus phase velocity of the reflected waves 
shows that the amplitude decreases as the phase velocity 
increases but it reduces to zero after a very long time, 
which explain the reason why Love waves cases large 
scale destruction during earthquake. 

 

  
Fig. 3. Group and Phase velocities of Love waves.   Fig. 4. Amplitude versus Phase velocity. 
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