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INTRODUCTION 
 
Many important problems of engineering mechanics like 
elasticity, plasticity, and fracture mechanics and 
aerodynamics can be reduced to the solution of finite-part 
or hypersingular integral equations see Chan et al. (2003), 
Ladopoulous (2000) and Manegato (2009). Hence, it is 
interest to solve numerically this type of singular integral 
equations Boykov et al. (2010), Mandal and Bera (2006). 
Chebyshev polynomials are of great importance in many 
areas of mathematics particularly approximation theory, 
see Akyuz- Dascioglu and Cerdik (2006) and Mandal and 
Bera, (2006). 
 
 In this paper we analyzed the numerical solution of 
hypersingular and singular integral equations by using 
Chebyshev polynomial of second kind to obtain systems 
of linear algebraic equations, these systems are solved 
numerically. The methodology of the present work 
expected to be useful for solving hypersingular and 
singular integral equations of the first kind, involving 
partly hypersingular and singular kernels respectively and 
partly regular kernels are developed here. The singularity 
in singular integral equation is assumed to be of the 
Cauchy type. The method is illustrated by considering 
some examples. 
 
Consider the following hypersingular integral equation of 
first kind, over a finite interval:  
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with ( ) 01 =±x , where ),( τth , ),( τtM and )(tf  
are given real-valued continuous functions belong to the 
class Holder of continuous functions, ( )tx  is unknown 
function to be determine. The hypersingular integral 

equations of form (1.1) and other different forms have 
many applications in Banerjea et al. (1996), Chan et al. 
(2003), Kanoria and Mandal) 2002 and  Parsons and 
Martin (1992, 1994). An approximate method for solving 
(1.1) using a polynomial approximation of degree n  has 
been proposed in Mandal and Bera (2006). 
 
Singular integral equation of first kind, with a Cauchy 
type singular kernel, over a finite interval can be 
represented by  
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where ),(~ τth , ),(~ τtM and ( )tg  are given real-
valued continuous functions belong to the class Holder of 
continuous functions and 0),(~

≠tth . In equation (1.2) 
the singular kernel is interpreted as Cauchy principle 
value. Integral equation of form (1.2) and other different 
forms occur in varieties of mixed boundary value 
problems of mathematical physics which include 
problems of two dimensional deformations of isotropic 
elastic bodies involving cracks (Gakhov, 1966; 
Ladopoulous, 2000; Martin and Rizzo, 1989) and 
scattering of two-dimensional surface water waves by 
vertical barriers (Chakrabarti, 1989; Chakrabarti and 
Bharatti, 1992) and other related problems. An 
approximate method for solving (1.2) using a polynomial 
approximation of degree n  has been proposed in 
Chakrabarti and Berghe (2004). 
 
The analytical solution of the simple singular integral 
equation  
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For 1),(~
=τth and 0),(~ =τtM , bounded at the end 

points 1±=t , is given by the following formula 
Eshkuvatov et al. (2009): Corresponding author email: sd.1974@hotmail.com
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Let us show that singular integral equations of the first 
kind under some set of additional conditions can be 
reduced to hypersingular integral equations. For example, 
let us consider the equation 
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where  ( )τ,~ th  and g(t) are continuously differentiable 
functions. If equation (1.6) has a solution x(t) then the 
following equation 
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has the same solution. However, equation. (1.7) may also 
have additional solutions.  
 
A check that the obtained solution of equation (1.7) is 
also a solution of equation (1.6) presents no difficulties 
and therefore the transition to high-order singularity 
equations is very attractive in numerical implementation 
(Boykov et al., 2010). In fact if ,.)()()(1 thx ττϕ = , the 
hypersingular integral in (1.1) is defined as:  
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Thus     

( )
;)()( 1

1
2

1
1

1

1 τ
τ

τϕ
τ

τ
τϕ d

t
d

tdt
d

∫∫
−− −

=
−

   (1.8) 

 
In this paper the used approximate method for solving 
equations (1.1) and (1.2) stems from recent work 
Eshkuvatov et al. (2009) wherein an approximate method 
has been developed to solve the simple equation (1.3). 
The approximate method developed below appears to be 
quite appropriate for solving the most general type 
equations (1.1) and (1.2). Also we illustrate by some 
examples that the approximate solutions of the singular 
integral equations and the corresponding hypersingular 
singular integral equations are coincided.  
  

The approximate solution 
The chebyshev polynomials of the second kind, iU , can 
be defined by the recurrence relation  
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Let the unknown function ( )tx  in Eq. (1.1) be 

approximated by the polynomial function nx  : 
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where niai ,...,2,1,0, =  are unknown coefficients.  
Substituting the approximate solution (2.2) for the 
unknown function into (1.1),  where 

∑∑
==

≅≅
s

q

q
q

m

p

p
p tMxtMthth

00
)(),(,)(),( τττ , we obtain  

                              

,11),()(
0

≤≤−=∑
=

ttfta i

n

i
iλ     (2.3) 

where 
                               

∑∑
==

+=
s

q
iqq

m

p
ippi tMtvtht

0
,

0
, )()()()( ζλ      (2.4) 

                            
with 

( )
,11

)(1
)(

1

1
2

2

, ≤≤−
−

−
= ∫

−

td
t

U
tv i

p

pi τ
τ

τττ
 (2.5) 

                                 

∫
−

−=
1

1

2
, )(1 ττττζ dU i

q
iq   (2.6) 

Using the zeros kt  of the chebyshev polynomial of the 

first kind ( )tTn 1+  we obtain the following system of 
linear equations :  
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By solving the system of equations (2.7) for the unknown 
coefficients  niai ,...,1,0, =  and substituting the values 

of ia  into (2.2) we obtain the approximate solution of 
equation (1.1). 
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Similarly, substituting the approximate solution (2.2) for 
the unknown function into (1.2), such that  

∑∑
==

≅≅
s

q

q
q

m

p

p
p tMxtMthth

00
)(~),(~,)(~),(~ τττ , 

yields  
                              

,11),()(~
0

<<−=∑
=

ttgta i

n

i
iβ  (2.9) 

where 
                               

∑∑
==

+=
s

q
iqq

m

p
pipi tMtwtht

0
,

0
, )(~)()(~)( ζβ  (2.10) 

with 

,11
)(1

)(
1

1

2

, <<−
−

−
= ∫

−

td
t
U

tw i
p

pi τ
τ

τττ
(2.11)                        

Substituting the collocation points kt  into (2.9) we obtain 
the following system of linear equations : 
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By solving the system of equations (2.12) for the 
unknown coefficients  niai ,...,1,0,~ =  and substituting 

the values of ia~  into (2.2), instead of the values ia , we 
obtain the approximate solution of equation (1.2) as the 
form   
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Numerical examples 
In this section, we consider six problems to illustrate the 
above method. All results were computed using 
FORTRAN code. 
 
Example 1 Consider the following singular integral 
equation 
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And seek the solution ( )τx  as the polynomial function 

nx  : 
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Hence the relation (2.9) takes the form: 
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and applying the relation 
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Where ( )tTi 1+  is the Chebyshev  polynomial of first kind, 
The relations (3.4) –(3.6) we get 
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By using the zeros kt of Chebyshev  polynomial ( )tTn 1+ , 

for ,3=n we obtain the following system of linear 
equations : 
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for the unknown coefficients 3,2,1,0,~ =iai  that 
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From (2.1), (3.8) we obtain the approximate solution of 
equation (3.1) in the form  
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Which coincides with the exact solution. The error of 
approximate solution (3.9) of equation (3.1) at 20=n  is 
given by table 1. 
 
In example 2 we solve the corresponding hypersingular 
integral equation of the equation (3.1). 
 
Example 2 Consider the following hypersingular integral 
equation   
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Applying the relation 
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From the relations (3.12)- (3.14) we obtain  
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By using the zeros kt of Chebyshev  polynomial ( )tTn 1+ , 

for ,3=n we obtain the following system of linear 
equations : 
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Where ( ) ( )ttk λλ =  at ktt = . By solving this system 

for the unknown coefficients 3,2,1,0, =iai  that 
produces 
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From (2.1) and (3.16) we obtain the approximate solution 
of equation (3.10) in the form  
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Which coincides with the exact solution. The error of 
approximate solution (3.17) of equation (3.10) 
at 20=n  is given by Table 1. 
 
Example 3 Consider the following singular integral 
equation 
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From the relations (3.4) and (3.19)-(3.23) we get  
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By using the zeros kt of Chebyshev  polynomial ( )tTn 1+ , 

for ,3=n we obtain the following system of linear 
equations : 
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By solving this system for the unknown coefficients 
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From (2.1), (3.25) we obtain the approximate solution of 
equation (3.18) in the form  
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Which coincides with the exact solution. The error of 
approximate solution (3.26) of equation (3.18) 
at 20=n  is given by table 1. 
 
In example 4 we solve the corresponding hypersingular 
integral equation of the equation (3.18). 
 
 Example 4 Consider the following hypersingular integral 
equation 
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From the relations (3.13), (3.21), (3.28) and (3.29) we get  
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By using the zeros kt  of Chebyshev  polynomial ( )tTn 1+ , 

for ,3=n we obtain the following system of linear 
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From (2.1), (3.31) we obtain the approximate solution of 
equation (3.27) in the form  
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Which coincides with the exact solution. The error of 
approximate solution (3.32) of equation (3.27) 
at 20=n  is given by table 2. 
    
Example 5.  Consider the following singular integral 
equation 
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By using the zeros kt of Chebyshev  polynomial ( )tTn 1+ , 

for ,3=n we obtain the following system of linear 
equations : 

                      ( ) ( ) ( ),4,3,2,1,~3

0
==∑

=
ktgta kki

i
iβ     

 
By solving this system for the unknown coefficients 

3,2,1,0,~ =iai  that produces 
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⎬
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                                                                                  (3.38)                     

From (2.1), (3.38) we obtain the approximate solution of 
equation (3.33) in the form  
                                                      

( )tttxn −
−−

≅ 4
2
1)(

2

π
                       (3.39) 

 
Which coincides with the exact solution. The error of 
approximate solution (3.39) of equation (3.33) 
at 20=n  is given by table 2. 
In example 6 we solve the corresponding hypersingular 
integral equation of the equation (3.33). 
 
Example 6 Consider the following hypersingular integral 
equation                                             
                                      

11,23)(2
)(
)( 1

1

1

1
2 ≤≤−+−=+

− ∫∫
−−

ttdxtd
t

x τττ
τ

τ   

                                                                                  (3.40) 
Which corresponds with 1),( =τth  and ttL 2),( =τ  . 
So, one gets 
 )0(,0)(,1)(0 >== pthth p  
 and  

)0(0)(,2)(0 >== qtMttM q                                             
Hence the relation (2.4) takes the form: 
                                                        
( ) ( ) iii ttvt ,0,0 2 ζλ +=                                       (3.41)                                 

from (3.13) and (3.21) we get  
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By using the zeros of Chebyshev  polynomial ( )tTn 1+ , 

for ,3=n we obtain the following system of linear 
equations : 
                                       

( ) ( ) ( ),4,3,2,1,
3

0
==∑

=
ktfta kki

i
iλ     

By solving this system for the unknown coefficients 
3,2,1,0, =iai  that produces 
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⎪
⎬
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,10957745.7,10366199.6
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aa

                                                                                   (3.43)                     
From (2.1), (3.43) we obtain the approximate solution of 
equation (3.40) in the form  
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( )tttxn −
−−

≅ 4
2
1)(

2

π
                       (3.44) 

Which coincides with the exact solution. The error of 
approximate solution (3.44) of equation (3.40) 
at 20=n  is given by table 2. 
 
CONCLUSION 
 
Numerical results, show that the errors of approximate 
solutions of examples 1-6 with small value of n  are very 
small. These show that the approximate method is very 
accurate. 
 
The approximate method shows that the approximate 
solutions of the singular integral equations and the 
corresponding hypersingular integral equations are 
coincided. 
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