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ABSTRACT

This paper is devoted to study the approximate solution of hypersingular and singular integral equations by means of
chebyshev polynomial of second kind. Some examples are presented to illustrate the method.
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INTRODUCTION

Many important problems of engineering mechanics like
elasticity, plasticity, and fracture mechanics and
aerodynamics can be reduced to the solution of finite-part
or hypersingular integral equations see Chan et al. (2003),
Ladopoulous (2000) and Manegato (2009). Hence, it is
interest to solve numerically this type of singular integral
equations Boykov et al. (2010), Mandal and Bera (2006).
Chebyshev polynomials are of great importance in many
areas of mathematics particularly approximation theory,
see Akyuz- Dascioglu and Cerdik (2006) and Mandal and
Bera, (2006).

In this paper we analyzed the numerical solution of
hypersingular and singular integral equations by using
Chebyshev polynomial of second kind to obtain systems
of linear algebraic equations, these systems are solved
numerically. The methodology of the present work
expected to be useful for solving hypersingular and
singular integral equations of the first kind, involving
partly hypersingular and singular kernels respectively and
partly regular kernels are developed here. The singularity
in singular integral equation is assumed to be of the
Cauchy type. The method is illustrated by considering
some examples.

Consider the following hypersingular integral equation of
first kind, over a finite interval:

h(t.7)
It )L %

with x(+1)=0, where h(t,7) , M(t,z) and f(t)
are given real-valued continuous functions belong to the
class Holder of continuous functions, X(t) is unknown
function to be determine. The hypersingular integral

+M(t, z’)}dr— f(t), —1<t<1 (1)
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equations of form (1.1) and other different forms have
many applications in Banerjea et al. (1996), Chan et al.
(2003), Kanoria and Mandal) 2002 and Parsons and
Martin (1992, 1994). An approximate method for solving
(1.1) using a polynomial approximation of degree N has
been proposed in Mandal and Bera (2006).

Singular integral equation of first kind, with a Cauchy
type singular kernel, over a finite interval can be
represented by

1

I(){“(”) Ma,r)}dnga), -1<t<1(2)

where h (t,7) , M (t,7) and g(t) are given real-
valued continuous functions belong to the class Holder of

continuous functions and h(t,t) # 0. In equation (1.2)

the singular kernel is interpreted as Cauchy principle
value. Integral equation of form (1.2) and other different
forms occur in varieties of mixed boundary value
problems of mathematical physics which include
problems of two dimensional deformations of isotropic
elastic bodies involving cracks (Gakhov, 1966;
Ladopoulous, 2000; Martin and Rizzo, 1989) and
scattering of two-dimensional surface water waves by
vertical barriers (Chakrabarti, 1989; Chakrabarti and
Bharatti, 1992) and other related problems. An
approximate method for solving (1.2) using a polynomial
approximation of degree N has been proposed in
Chakrabarti and Berghe (2004).

The analytical solution of the simple singular integral
equation

X
j (T)d —g@t), -l<t<l (1.3)
7=
For h(t,r) =1 and M (t,7)=0, bounded at the end
points t =21, is given by the following formula

Eshkuvatov et al. (2009):
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The approximate solution
\1- t g(z) . :
X(t) =-— dr (1.4) The chebyshev polynomials of the second kind, U, can
S41-7%(r 1) be defined by the recurrence relation
under the condition
90 g, o, as  Ye=1, U, (0 =2t o1
S41-72 u,t)y=2tu,,(t)-U, ,(t) n>2

Let us show that singular integral equations of the first
kind under some set of additional conditions can be
reduced to hypersingular integral equations. For example,
let us consider the equation

=g(1), (1.6)

jhoxe) 4,
e —t
where h(t,r) and g(t) are continuously differentiable

functions. If equation (1.6) has a solution x(t) then the
following equation

.1[ :'(t,r)x(r) It j- hEt,i)tX)(zr)d

has the same solution. However, equation. (1.7) may also
have additional solutions.

r=g(t) @7

a - -1

A check that the obtained solution of equation (1.7) is
also a solution of equation (1.6) presents no difficulties
and therefore the transition to high-order singularity
equations is very attractive in numerical implementation

(Boykov et al., 2010). In fact if @, (7) = X(z) h(t,.), the
hypersingular integral in (1.1) is defined as:

gjfpl(r)drzi P, )Inl—t|— ¢ (—1)In‘1+t‘—_1[(p (2)Infr -t|dz
dtd -t dt|" ' '

__o® 6D (a@f j‘”l(’) j (T)dz' “l<t<l
1-t 1+t T— t‘l ,1f t 1

Thus

die(r T

a (01( ) _J‘ (01( ) dr: (18)

dt % 7 -t S(r—t)

In this paper the used approximate method for solving
equations (1.1) and (1.2) stems from recent work
Eshkuvatov et al. (2009) wherein an approximate method
has been developed to solve the simple equation (1.3).
The approximate method developed below appears to be
quite appropriate for solving the most general type
equations (1.1) and (1.2). Also we illustrate by some
examples that the approximate solutions of the singular
integral equations and the corresponding hypersingular
singular integral equations are coincided.

Let the unknown function X(t) in Eg. (1.1) be
approximated by the polynomial function X

X, () =V1-t* 23U, (1),

where @,, 1 =0,1,2,...,n are unknown coefficients.
Substituting the approximate solution (2.2) for the

-1<t<1 (2.2)

unknown function into (1.2), where
h(t,7) = ihp(t)rp , M (t,x) = imq(t)rq , we obtain
p=0 q=0
SaA(t) = f (). _1<t<1, 2.3)
i=0
where
A () = zo h, (©)V,, (1) + zo VHGY 2.4)
p= g=
with
P
v, (t) = j Vl TU@ g orer @)
’ bl 2' t)
1
Coi = _[r‘Wl—z'ZUi(z')dr (2.6)
-1

Using the zeros t, of the chebyshev polynomial of the

first kind Tn+1() we obtain the following system of
linear equations :

ZO (Zh (t)V,, (&, )+2M (t, )gq,J ft,) (k=12,..,n+1),
(2.7)

t, :cos(%j, k=12,..,n+1, (2.8)

By solving the system of equations (2.7) for the unknown
coefficients @,, 1 =0,1,...,n and substituting the values

of @; into (2.2) we obtain the approximate solution of
equation (1.1).
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Similarly, substituting the approximate solution (2.2) for
the unknown function into (1.2), such that

hto)= S M, MEtx)= XM, 1)

yields

f: a5 (t)=9(), ~l<t<l, (2.9)

i=0

wher

AO=2h,OW,0+ XM O, @1
p= q=

with
1.0 [1_ .21y

Wi,p(t)=.|.r ! TtU'(T)dr —-1<t<l, (2.11)
-1 T

Substituting the collocation points t, into (2.9) we obtain
the following system of linear equations :

M:

(ﬁﬁt)wwm)+imqm)gJ:ga0,w:Lz ..... n+1),
(2.12)

T
o

By solving the system of equations (2.12) for the
unknown coefficients Ei, i=01,...,n and substituting
the values of @; into (2.2), instead of the values a,, we

obtain the approximate solution of equation (1.2) as the
form

X, ) =V1-t* > a U () -1<t<l
i=0

(2.13)

Numerical examples

In this section, we consider six problems to illustrate the
above method. AIll results were computed using
FORTRAN code.

Example 1 Consider the following singular integral
equation

1
defzﬁt"'_&, -1<t<1l. (31
1 (2

And seek the solution X(r) as the polynomial function
X

n -

X, (t) =v1-t? ia‘iui(t),

Where

-l<x<1 (3.2)

hit,r)=r+2t, M(t,
So, one gets

r)=0, g(t)=6t>-3t.

he(t)=2t, hy(t)=1 b, (t)=0; (p=2) M, (t)=0; (a2 0)

Hence the relation (2.9) takes the form:

B (t) = ZtWO,i (t)+ Wi (t) 33)

where

W, (t) = j“l Y, (T) Cl<t<l (34
w,, (1) = j”l FU@, ~1<t<1l, (39

and applying the relation

f o) r=-7T,,(t) (36)

-1
Where T.+1( ) is the Chebyshev polynomial of first kind,
The relations (3.4) —(3.6) we get

—72'(31:2 —%) =0
~3z(2t* -t) i=1
(t) = 3.7)
Al —3x(at* —3t?) i=2
—72(24t5 —16t° +%tj i=3

By using the zeros t, of Chebyshev polynomial Tn+1( )

for n = 3, we obtain the following system of linear
equations :

>a4(,)=9) (k-1234)

Where A(t, )= B(t) at t =t, . By solving this system
a,i1=0123 that

} (38)

From (2.1), (3.8) we obtain the approximate solution of
equation (3.1) in the form

for the unknown coefficients

produces
a, =2.455668 x10™°, & =-3.183099 x10 ",

4, =-7.818176x10°, &, =—1.457889 x10"°
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3.9)

X, (t) ;_72(t 1-t? )

Which coincides with the exact solution. The error of
approximate solution (3.9) of equation (3.1) at n =20 is
given by table 1.

In example 2 we solve the corresponding hypersingular
integral equation of the equation (3.1).

Example 2 Consider the following hypersingular integral
equation

-1<t<1

Xz
j ( )2 dr =4t
_1(2' —t)
And seek the solution X(z‘) as the polynomial function
X

(3.10)

3
X, (t) = Vl_tz Zaiui(t)1
i=0
M (t,r) =0,
one gets

ho(t)=1 h,(t)=0; (p>1) M, (t)=0; (4= 0).

Hence the relation (2.4) takes the form:

~1<x<1 (311

Where h(t,z')zl,_ f(t)z 4t . So,

23(t)= o, (t) (312)
where
1/1

Vo, (t) = j ‘ U g, 1<y <1, (313)
Applying the relatlon
ATV 4o ) e
-1 (T —t)
From the relations (3.12)- (3.14) we obtain

- i=0
an- L

0= — z(at® -2t 1) i=2
—zlett -4’ —8t-1)  i=3

By using the zeros t, of Chebyshev polynomial TM( )

for N =3,we obtain the following system of linear
equations :

Where ﬂ(tk): ﬂ(t) at t =t,. By solving this system
for the unknown coefficients @&;,1=012,3 that

produces

a, =1.038365x107", a, =-3.183098 x10*,

(3.16)
a, =9.839027 x10 ™, a, =—-1.743203 x10"°

From (2.1) and (3.16) we obtain the approximate solution
of equation (3.10) in the form

(3.17)

X (t) ;_72(t 1-t? )

Which coincides with the exact solution. The error of
approximate solution (3.17) of equation (3.10)

at n =20 is given by Table 1.

Example 3 Consider the following singular integral
equation

1 2

J‘X(T)|:(T+t)+(1'3+t2)i|df=2t4—2t2—3, —1<t<1(3'18)
21 -1 8

Where
ﬁ(t,r):z'z +1,

Mt,z)=7%+t2, g(t)=2t* -2t -

So, one gets

ho(t)=t, M(t)=0, h,(t)=1 h (t)=0;(p=>3)
M,(t)=t2, M,(t)=0, M, (t)=0, M,(t)=1, M,(t)=0; (4 > 4)
Hence the relation (2.9) takes the form:
B () =t (1) + wy () + 128 + & (3.19)
where
1.2 1_ 2 U
Wz’i(t)=J'T v Tt 4 _1ct<1 @)
T_
-1
1
Coi = f\/l—rzui(r)dr (3.21)
-1
1
Cai = I73V1—72Ui(r)df (3.22)
-1
By applying the orthogonal property
1 0 i=0
[V1-2°U,()V, (1) dr = « (3.23)
1 E =



Canadian Journal of Pure and Applied Sciences 1689
From the relations (3.4) and (3.19)-(3.23) we get ho(t)=t, h(t)= ,(t)=1 h, (t)=0; (p>3)
M,(t)=2t, M (t)=0;(q>1)
T (he3 | 42 _
_E(Zt *t _t) =0 Hence the relation (2.4) takes the form:
3
_”(2t4 P _t_8j =1 4 (t):tvo,i (t)+V2,i(t)+2t§o,i (3.28)
Bi(t) = 1 where
ﬁ(4t5+4t4—3t3—3t2+4tj i=2
L . t2l1-7 U(r) 1<t<]
—E(Ste+8t5—8t4—8t3+t2+t—16j i_g V(D)= fl —1<t<l (329

(3.24)

By using the zeros t, of Chebyshev polynomial Tn+1( )

for n = 3, we obtain the following system of linear
equations :

ap, (tk ) = g(tk )’ (k :112’314)1

Mo

I
o

By solving this system for the unknown coefficients
a,, i =0,1,2,3 that produces

=6.366197 10", & =-3.183099 x10°*

| (3.25)
=2.279989 x10°®, &, =—7.819254 x10°° }

a
a,
From (2.1), (3.25) we obtain the approximate solution of
equation (3.18) in the form

X, (t) = W(l—t)

Which coincides with the exact solution. The error of
approximate solution (3.26) of equation (3.18)

at n = 20 is given by table 1.

(3.26)

In example 4 we solve the corresponding hypersingular
integral equation of the equation (3.18).

Example 4 Consider the following hypersingular integral
equation

j ()D t)t)+2t}dr—8t3 27 —2t+1, —1<t<1

(3.27)
Where
h(t,z)=7%+t,M(t,z)=2t, f(t)=8t°> —2t* -2t +1
So, one gets

From the relatlons (3 13) (3.21), (3.28) and (3.29) we get

77[1—3t2j =0

2

- —z(8t® +at? —2t ) i=1
- 2(o0tt +12t° —ot? - 3t) i=2

—ﬂ(48t5 +32t* —32t% —16t2 +%tj i=3
(3.30)

By using the zeros t, of Chebyshev polynomial TM( )

for N = 3, we obtain the following system of linear
equations :

a4lt)=f(t) (k=1234)

M

i=0

By solving this system for the unknown coefficients
i =0,1,2,3 that produces

a, =6.366197 x10*,

a, =-3.183098 x10*
a, =—-7.354522 x10°°,

a, =2.346384 x10°°

(3.31)
From (2.1), (3.31) we obtain the approximate solution of
equation (3.27) in the form

) = 24/1—t2
T

X, (t) = (1-t) (3.32)

Which coincides with the exact solution. The error of
approximate  solution (3.32) of equation (3.27)

at n = 20 is given by table 2.

Example 5.
equation

Consider the following singular integral
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1 1 _
j@dwr [ +t?) x(t) dt _ 3o
_1T—t 1 2

(3.33)
with  h(z,t)=1  and

Which corresponds

M (7,t) = 7% +1? . So, one gets

h(t)=1, h,(t)=0, (p>0)
M, (t) =t%, M, (t) =0, M,(x) =1 M, (1) =0 (q>2)

Hence, we get

iﬁiﬂi(t)=—t2+2t, ~l<x<1 (3.34)
i=0
where
Bi(t) = Woi (t) +'[Zé/o,i +Coin (i=01234)
(3.35)
with
1
Coi = erVI—TZUi(r)dr (3.36)
-1
from (3.4),(3.21), (3.35) and (3.36) we get
%(4t2—8t+1) i=0
_ 2 _ —
50 _Z(Zt 1) i=1
?(32t3 —24t-1)  i=2
—zett -8t +1)  i=3
(3.37)

By using the zeros t, of Chebyshev polynomial T, (t) ,

for n = 3, we obtain the following system of linear
equations :

aiﬂi (tk ) = g(tk )’ (k :112’314)1

Mo

I
o

By solving this system for the unknown coefficients
a,,1=0,1,2,3 that produces
d, =-6.366197 x10 ",

a, =7.957754 x107,
d, =1.746461x10°°,

d, =1.827517 x10°°
(3.38)

From (2.1), (3.38) we obtain the approximate solution of
equation (3.33) in the form

gm_t)

Which coincides with the exact solution. The error of
approximate solution (3.39) of equation (3.33)

at n = 20 is given by table 2.

In example 6 we solve the corresponding hypersingular
integral equation of the equation (3.33).

X, (t) = (3.39)

Example 6 Consider the following hypersingular integral
equation

j- x(7)

S -t)°
(3.40)
Which corresponds with h(t,z) =1 and L(t,7) =2t .
So, one gets
ho =1,
and
Mo(t)=2t, M (t)=0 (q>0)
Hence the relation (2.4) takes the form:

1
dr+ [2tx(r)dr=-3t+2, -1<t<l
-1

h, () =0, (p>0)

(1) = Vo, (1) + 2t (3.41)
from (3.13) and (3.21) we get
z(t-1) i=0
—4rt i=1
() = (3.42)
Al “3rlar-1) Q=2
~167(2t°-t)  i=3

By using the zeros of Chebyshev polynomial Tml(t),

for n = 3, we obtain the following system of linear
equations :

iaiii (t)=f(t) (k=1234)

By solving this system for the unknown coefficients
a;, 1=0,1,2,3 that produces

a, =—6.366199 x 10,

a, =7.957745x1072,
a, =-2.038681x10°°,

a, =2.170145 x10°°

(3.43)
From (2.1), (3.43) we obtain the approximate solution of
equation (3.40) in the form
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Table 1. Illustrates the errors of the approximate solutions (3.9), (3.17) and (3.26) respectively at n = 20.

X Error 1 Error 2 Error 3
-.950000E+00 .298023E-07 .298023E-07 .000000E+00
-.900000E+00 .149012E-07 .596046E-07 .000000E+00
-.700000E+00 .298023E-07 .596046E-07 .000000E+00
-.500000E+00 .298023E-07 .596046E-07 .596046E-07
-.300000E+00 .447035E-07 .447035E-07 .596046E-07
-.100000E+00 .372529E-07 .149012E-07 .596046E-07

.000000E+00 .323749E-07 .000000E+00 .596046E-07
.100000E+00 .298023E-07 .149012E-07 .596046E-07
.300000E+00 .149012E-07 .447035E-07 .894070E-07
.500000E+00 .000000E+00 .596046E-07 .894070E-07
.700000E+00 .000000E+00 .596046E-07 .745058E-07
.900000E+00 .149012E-07 .596046E-07 .502914E-07
.950000E+00 .149012E-07 .298023E-07 .363216E-07

Table 2. lllustrates the errors of the approximate solutions (

3.32), (3.39) and (3.44) respectively at n = 20.

X Error 4 Error 5 Error 6
-.950000E+00 .596046E-07 .298023E-07 .447035E-07
-.900000E+00 .596046E-07 .298023E-07 .596046E-07
-.700000E+00 .119209E-06 .000000E+00 .119209E-06
-.500000E+00 .119209E-06 .000000E+00 .119209E-06
-.300000E+00 .119209E-06 .000000E+00 .178814E-06
-.100000E+00 .596046E-07 .596046E-07 .119209E-06
.000000E+00 .596046E-07 .596046E-07 .178814E-06
.100000E+00 .000000E+00 .596046E-07 .178814E-06
.300000E+00 .298023E-07 .119209E-06 .178814E-06
.500000E+00 .000000E+00 .119209E-06 .178814E-06
.700000E+00 .149012E-07 .119209E-06 .119209E-06
.900000E+00 .204891E-07 .894070E-07 .894070E-07
.950000E+00 .167638E-07 .596046E-07 .596046E-07
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