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ABSTRACT 
 
The paper is concerned with the applicability of the polynomial collocation method to a class of nonlinear singular 
integral equations with a Carleman shift preserving orientation on simple closed smooth Jordan curve in the generalized 
Holder space ( )LHϕ . The method is illustrated by considering some simple examples. 
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INTRODUCTION 
 
Nonlinear singular integral equations are widely used and 
connected with applications in several field of 
engineering mechanics like structural analysis, fluid 
mechanics and aerodynamics. This leads to the necessity 
to derive solutions for the nonlinear singular integral 
equations arising in applications, by using some 
approximate and constructive methods, (Ladopoulous, 
2000). The theory of nonlinear singular integral equations 
with Hilbert and Cauchy kernel and its related Riemann-
Hilbert problems have been developed in works of 
Pogorozelski (1966), Guseinov and Mukhtarove (1980), 
Wolfersdorf (1985) and Ladopoulous (2000).  
 
The successful development of the theory of singular 
integral equations (SIE) naturally stimulated the study of 
singular integral equations with shift (SIES). The Noether 
theory of singular integral operators with shift (SIOS) is 
developed for a closed and open contour (Kravchenko and 
Lebre, 1995; Kravchenko and Litvinchuk; 1994). 
Existence results and approximate solutions have been 
studied for nonlinear singular integral equations (NSIE) 
and nonlinear singular integral equations with shift 
(NSIES) by many authors among them we mention (Amer 
and Dardery (2004, 2005, 2009), Amer and Nagdy 
(2000), Amer (2001, 1996), Jinyuan (2000), Junghanns 
and Weber (1993), Ladopoulous and Zisis (1996), 
Ladopoulous (2000), Nguyen (1989) and Saleh and Amer 
(1992).  
 
The classical and more recent results on the solvability of 
NSIE should be generalized to corresponding equations 

with shift (Wolfersdorf, 1992). The theory of SIES is an 
important part of integral equations because of its recent 
applications in many field of physics and engineering 
(Baturev et al., 1996; Kravchenko et al., 1995; 
Kravchenko and Litvinchuk,  1994).  
     
We consider a simple closed smooth Jordan curve L  in 
the complex plane with equation ( )stt = , ls ≤≤0  
where s-arc coordinate accounts from some fixed point, 
l -length of the curve L . Denote by +D  and  −D the 
interior and exterior domain of L  respectively and let the 
origin be +∈D0 . Denote by 0L  the unite circle with 

the center at the origin and let +
0L  and −

0L  the interior 

and exterior domain of 0L  respectively. Consider the 

conformal mappings ( )rA  from −
0L  onto −D  such that 

( ) ∞=∞A , ( ) 0lim 1 >−

∞→
rrA

r
  and ( )rB  from −

0L  

onto +D such that ( ) 0=∞B .     
Now, consider the following NSIES:  
    
( )( ) ( )( ) ( ) ( )( )( ) −Ψ+Ψ=Ρ tuttuttu αα ,,)( 21

( )( ) ( )( )
∫ ⎥

⎦

⎤
⎢
⎣

⎡
−

Ψ
+

−
Ψ

−
L t

u
t

u
i )(

,,1 43

ατ
ττ

τ
ττ

π
     

( ) Ltforalltfd ∈= ,τ         (0.1) 
 
Under the following conditions 
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,)())(,())(,( 31 tatuttut ouou ==ψψ   

).()))((),(()))((),(( 42 tbtuttut ouou =−= ααψααψ  (0.2) 
 
for initial value 0u , in the generalized Holder space 

( )LH ϕ , )(tu is unknown function, ( )tf  and 

4,...,1)),(,( =Ψ rtutr , are continuous functions on L  
and on the domain 
                                             

( ) ( ){ }∞∞−∈∈= ,,:, uLtutD , 
respectively, and the homeomorphism LL →:α  is 
preserving orientation, satisfying the Carleman condition 
                                            

Ltttt ∈== ,)())(( 2ααα ,      (0.3)   

and the derivative ( ) 0≠′ tα  satisfies the usual Holder 
condition. 
 
The equation (0.1) in case ( ) 0=tf  without shift has 
been studied in Amer and Nagdy (2002) by modified 
Newton-Kantorovich method in the generalized Holder 
space [ ]baH m ,,ϕ .  
 
In this paper the polynomial collocation method has been 
applied to NSIES (0.1) under condition (0.2), with zero 
index, in the generalized Holder space ( )LH ϕ .  
 
1. Some auxiliary results. 
 
Definition 1.1. We denote by ( )DH 1,ϕ  to be the space 

of all functions 4,...,1)),(,( =Ψ rtutr , which have 
partial derivatives up to second order with respect to u  
and satisfy the following condition 
                                    

( ) ( ) ( ){ }21212211 ,, uuttcutut r
jruru jj −+−≤− ϕψψ

,                  (1.1) 
where ( ) Dut ii ∈, , Φ∈= ϕ,2,1i  and r

jc  are 

constants; .2,1,0=j  
 
Definition 1.2 (Guseinov and Mukhtarov, 1980; Mikhlin 
and Prossdorf, 1986). We denote by  ( )Lc  the space of 

all continuous functions ( )tu defined on L  with the 
norm: 
   )(max)( tuu

LtLc ∈
=  .        (1.2) 

 
Definition 1.3 (Amer, 2001; Guseinov and Mukhtarov, 
1980). We denote by  )(LHϕ  the space of all functions 

( ) ( )Lctu ∈  such that  ( )( )δϕδω ou =)( , Φ∈Hϕ , 
with the norm: 
                                                        

uuu
Lc
+=

)(ϕ
 ;  (1.3) 

    
)(
)(

sup
0 δϕ

δω
δ

uu
>

= ; 

( ) ( ) ,)(~: 2
0 ⎭

⎬
⎫

⎩
⎨
⎧

≤+Φ∈=Φ ∫∫ δϕξ
ξ
ξϕδξ

ξ
ξϕϕ

δ

δ

cddH
l

 

 c~ is a positive constant. 
   
Definition 1.4 (Amer, 2001; Kravchenko and Litvinchuk, 
1994). Let ( ) ( )LHLHS ϕϕ →:  denotes to the 
operator of singular integration     

( )( ) ( ) τ
τ
τ

π
d

t
u

i
tSu

L
∫ −

=
1

 ,            (1.4)                             

to which we associate the Cauchy  projection operators 

( ) ISSIP =±=±
2,

2
1  ,        (1.5) 

where I is the identity operator on ( )LHϕ . The Carleman 
shift operator             

( ) ( )LHLHW ϕϕ →: , is given by ( )( ) ( )( )tvtWv α= . 
 
Lemma 1.1 (Amer, 2001). The singular operator S  is a 
bounded operator on the space )(LHϕ and satisfies the 
inequality  

ϕϕ
ρ uSu 0≤ ,  (1.6) 

where 0ρ  is a constant defined as follows : 

        
( ) ,~1 2

0
10 ccdc +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= ∫

δ

ξ
ξ
ξϕρ  

where 1c , 2c , c~  are constants. 
 
Lemma 1.2  (Amer, 2001). The shift operator W  is a 
linear bounded continuously invertible operator on the 
space )(LHϕ  and satisfies the inequality 

ϕϕ γ uWu 0≤  ,                                           (1.7) 

where { } 000 ,1max ααγ and=  is a constant given by 

( ) ( )( )tutu
u

u α
δω
δω

α
δ

== ~,
)(
)(

sup ~

0
0

φ
.  

 
Lemma 1.3 (Amer and Dardery, 2009) Let the functions 

( ) 4,...,1,, =rutrψ , belong to ( )DH 1,ϕ  . Then the 
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operator ( )uΡ  is Frechet differentiable at every fixed 
point  )(LHu ϕ∈ , moreover 

−+=Ρ ))(()))((),(()())(,()( 21
' thtutthtuthu uu αααψψ

 ,)(
)(
))(,())(,(1 43 ττ

ατ
ττψ

τ
ττψ

π
dh

t
u

t
u

i L

uu∫
⎭
⎬
⎫

⎩
⎨
⎧

−
+

−
−  (1.8) 

satisfies Lipschitz condition  
                                           

ϕϕ
ρ 2112

'
1

' )()( uuuu −≤Ρ−Ρ ,     (1.9)  

in the sphere ( ) ( ){ }ruuLHuruS ≤−∈=
ϕϕϕ 00 :, , 

where 
( )4

100
3
10

2
10

1
11 cccc ργργρ +++= .  

 
Under condition (0.2), the equation (1.8)  reduces to the 
following SIES, for the unknown function ( )th  : 
 

( ) ( ) ( )

( ) ( ) ( ),)(,1
)(

)(

)())(()(0

tfdhtR
i

d
t

h
i
tb

d
t

h
i
tathtbthtah

LL

L

=+
−

+

+
−

−+=Γ

∫∫

∫

τττ
π

τ
ατ
τ

π

τ
τ
τ

π
α

(1.10)                                                                                                 

 
for initial value ou and the arbitrary function )(tf belong 

to the space ),(LHϕ   
where 

t
))(u,())t(u,t(

),t(R ou3ou3

−
−

=
τ

ττψψ
τ  

              
)t(

))(u,()))t((u),t(( ou4ou4

ατ
ττψααψ

−
−

+ . 

Using Definition 1.4 the dominant equation of equation 
(1.10) reduces to the following  singular integral operator 
with shift : 
                                                      

+− += WPtbPtaM )(2)(2 .  (1.11) 
 
Theorem 1.1 (Amer and Dardery, 2009; Kravchenko and 
Litvinchuk, 1994). The singular integral functional 
operator M is Noetherian on )(LHϕ  if and only if  
                                        

( ) ( ) Lontqandte ,00inf ≠> , 
where  

( ) ( ) ( ) ( )
( ) ( ) Lontb
tb
tatqtbte 0;,2 ≠== . 

The index of a Noetherian operator M is given by 

( ){ }LtqMind arg
2
1
π

χ == .       (1.12) 

Theorem 1.2 (Amer 2001; Saleh and Amer, 1992). Let 
the conditions of Lemma 1.3 and Theorem 1.1 be satisfied 

and ( )LHu ϕ∈0  is the initial approximation for equation 

(0.1) under conditions (0.2), ( )( ) 0
1

0 ε
ϕ
≤Ρ′ −u  and 

( )( ) ( ) 10
1

0 ε
ϕ
≤ΡΡ′ − uu . Then if 2

1
110 <= ερεm , then 

equation (0.1) under conditions (0.2) has a unique 
solution *u in the sphere ( )00 ; ruSϕ

 of the space ( )LHϕ , 

( ) rmmr ≤−−= −1
10 211ε , to which the successive 

approximations: ( )( ) ( )nnn uuuu ΡΡ′−= −
+

1
01  of modified 

Newton method converges and the rate of convergence is 
given by the inequality: 

 
1

*

1
ε

ϕ B
Buu

n

n −
≤− ; mB 211 −−=  

 
2. Collocation method. 
Now, we seek an approximate solution of equation (0.1) 
under conditions (0.2) in ( )LHϕ  as the form: 

( ) ∑
−=

=
n

nk

k
kn ttu ηη, ,                                              (2.1) 

where the coefficients kη are defined from the system of 
nonlinear algebraic equation with shift (SNAES)  
 

( )( ) ( ) ( )( )( )jnj2jnj1 t,u,tt,u,t αηαη Ψ+Ψ   

( )( ) ( )( ) ( ).tfd
)t(
,u,

t
,u,

i
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j
L j

n4

j

n3 =
⎥
⎥
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⎤

⎢
⎢
⎣

⎡

−
Ψ

+
−

Ψ
− ∫ τ

ατ
τητ

τ
τητ

π
     (2.2) 

where ( )( ) njnijt j 2,0,122exp =+= π . 

Consider (2n+1)- dimensional spaces )1(
ϕH  and )2(

ϕH  
with the norms: 

( )
ϕϕ

ηη ,.)1(
nu= ,    

( )kj

kj

kj
jj tt

uu
uu

−

−
+=

≠ ϕϕ
supmax)2( ,  

respectively, where ( ) )1(
01 ,...,,,..., ϕηηηηη Hnn ∈= −− and 

( ) )2(
20 ,..., ϕHuuu n ∈= . 

 
Introduce the operator ( ) )2()1(: ϕϕη HHn →Ρ  where  
 

( ) ( )( ) ( ) ( )( )( )jnj2jnj1n,j t,u,tt,u,t αηαηη Ψ+Ψ=Ρ  

( )( ) ( )( ) n2,0j,d
)t(
,u,

t
,u,

i
1

L j

n4

j

n3 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
Ψ

+
−

Ψ
− ∫ τ

ατ
τητ

τ
τητ

π
 

We can rewrite SNAES (2.2) in the operator form: 
                                                 

( ) ( ) .2,0,; njtfff jn ===Ρ η          (2.3) 
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Consider, the coordinates of the vector )0(η  from )1(
ϕH  

these are the Fourier coefficients of the function 
( )LHu ϕ∈0  that is  

( )( ) njdwwwBu
i L

j
j ,0,

2
1

0

1
0

)0( == ∫ −−

π
η  and 

( )( ) .1,,
2
1

0

1
0

)0( −−== ∫ −− njdwwwAu
i L

j
j π

η  

Analogous to Lemma 1.3 the following lemma is valid. 
 
Lemma 2.1. Amer (1996) Let the conditions of Lemma 
1.3 be satisfied. Then the operator nΡ  is Frechet 
differentiable at every fixed point ( ) )1(,..., ϕηη Hx nn ∈= − ,  
 Moreover 
 

)t,h(u))t,x(u,t(h)x( jnjnju1n,j ψ=Ρ′  
−+ ))t(,h(u)))t(,x(u),t(( jnjnju2 αααψ  

.n2,0j,d),h(u
)t(

)),x(u,(

t

)),x(u,(

i
1

n
L j

nu4

j

nu3 nn =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
+

−
− ∫ ττ

ατ

ττψ

τ

ττψ

π
 

 
where ( ) ( )1,..., ϕHhhh nn ∈= − , the derivative 

( ) ( ) ( )( )xPxPxP nnnn
'

,2
'
,0

' ...,,=  satisfies 
Lipschitz condition  
                                           

)1()2( 2112
'

1
' )()(

ϕϕ

ρ
HHnn xxxx −′≤Ρ−Ρ , 

in the sphere ( )1
)0( ;rS η  of the space ( )1

ϕH  , where '
1ρ  

is a positive constant.  
Now, we show that the system of linear algebraic 
equations with shift (SLAES): 
                        

( ) ,)0( ghn =Ρ′ η         (2.4) 
under the conditions  
 

( ) ( ) ,)()),(,()),(,( 0
3

0
1 jjojujoju tatuttut == ηψηψ (2.5) 

( ) =)))t(,(u),t(( j
0

oju2 αηαψ
( ) ).t(b)))t(,(u),t(( jj
0

oju4 =− αηαψ  

has a unique solution )1(
ϕHh∈  for arbitrary 

( ) )2(
20 ,..., ϕHggg n ∈=  . 

 
For this aim, we consider the SALES: 
 
( ) ( ) ( ) ( )( ) −+ τα jnjjnj thutbthuta ,),  

( ) ( ) ( ) ( )
+

−
+

−
− ∫∫ τ

ατ
τ

π
τ

τ
τ

π
d

)t(
,hu

i

tb
d

t
,hu

i

ta

L j

nj

L j

nj  

( ) ( ) ( ) n2,0j,tgd,hu,tR
i

1
jn

L
j ==+ ∫ τττ

π
 (2.6) 

corresponding to the SIES: 
 

( ) ( ) ( ) ( )
+

−
+

−
−+ ∫∫ τ

ατ
τ

π
τ

τ
τ

π
α d

)t(
)(u

i
tbd

t
)(u

i
ta))t((utb)t(uta

LL

 

( ) ( ),tgd)(u,tR
i

1

L

=+ ∫ τττ
π

  (2.7) 

According to the collocation method, we seek an 
approximate solution of equation (1.10) as the form :                    
                                                  

( ) ∑
−=

∈=
n

nk

k
kn Lttth ,β ,   (2.8) 

where the coefficients  kβ are defined from SLAES: 
                                                 

( )∑
−=

==
n
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jkjk njtgA 2,0,β              (2.9) 
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)t(bd
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1
t)t(aA j

L j

k
k
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⎛

−
−= ∫ τ

τ
τ

π
 

( ) ( ) ( ) τττ
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τ
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τ

π
α dh,tR

i
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d
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1
)t(

L
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L j

k
k
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⎟

⎠

⎞

⎜
⎜

⎝

⎛
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+

 
The SLAES (2.9) can be rewritten as following form: 
 

( ) ( ) ( )( ) ( ).,tR
i

1ttb2tta2
n

0k L
j

k
jkj

1

nk

k
jkj ∑ ∫∑

=

−

−=

++ τ
π

αββ  

( ) .n2,0j,tgd j

n

nk

k
k ==∑

−=

ττβ  (2.10) 

Where 
            ( ) ( ) ∑∑

−

−=

−

=

+ −==
1

0

,,
nk

k
kn

n

k

k
kn tthtth ββ  

Theorem 2.1. Let ( ) ( )tbta ,  and ( )tg  belong to 

( )LHϕ , ( ) 0≠tb  on L , the index 0=χ  and the 

operator 'Ρ  has a linear inverse in ( )LHϕ  , then for all 

( ),,max 0 χnn ≥  

⎭
⎬
⎫

⎩
⎨
⎧

<⎟
⎠
⎞

⎜
⎝
⎛∈= 1ln1:min 10 n

n
dNnn ϕ  , the system 

(2.10) has the unique solution  { }n
nk −

*β  and the 

approximate solution , ( ) ∑
−=

=
n

nk

k
kn tth ,** β of equation 
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(1.10) convergences to its exact solution *h , moreover 

( ) ( ) n
n

dthth n ln1
2

** ⎟
⎠
⎞

⎜
⎝
⎛≤− ϕ

ϕ
, 

where 1d  and 2d  are constants do not depend on n. 
Proof. 
 From [Gakhov, 1966], we can write equation (1.10) in 
the following form: 
                           

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ,,1
te
tgdhtR

ite
thtqth

L
∫ =+− −+ τττ

π
α  

setting 

                                               ( ) ( )( )
( )t

ttq −

+

=
ψ
αψ

. 

Then we have 
gGhBhh ~=+=Γ .   (2.11) 

Where 
( )( ) ( ) ( )( ) ( )( ) ( )thtthttBh −++− −= αψαψ , 

( )( ) ( ) ( ) ( ) τττ
π

dhtR
i
tctGh

L
∫= , ,          

( ) ( ) ( )tctgtg =~ , ( ) ( )
( )te

ttc
−

=
ψ ,  

( ) ( )( )zz θψ exp= ,                      (2.12) 
 

( ) ( )( ) ,Dz;d
zi

1z
L

+∈
−

= ∫ τ
τ

τγρ
π

θ  

( ) ( ) −∈
−

= ∫ Dz;d
zi

1z
L

τ
τ
τρ

π
θ , 

where  ( )tγ  is the inverse ( )tα  and ( )tρ is a solution of 
the Fredholm integral equation of second kind  
                           

( ) ( )
( ) ( ) ( ) ( )tqd

tti
t

L

ln11 '

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

+ ∫ ττρ
τατα

τα
π

ρ . 

Moreover, B is linear and G is completely continuous 
from ( )LHϕ  into itself. 

Denote by nX to be the (2n+1)- dimensional subspace of 

the space ( )LHϕ , and let nQ  be the projection operator 
into the set of interpolation polynomial of degree n with 
respect to the collocation points njt j 2,0, = . Then the 

system (2.10) can be written in nX  as a linear operator  
                                                        

nnnnnnn ghGhBh ~=+=Γ ,   (2.13)  
where 

                                    nnnn hBQhB = ,  

nnnn hGQhG = ,  gQg nn
~~ = . 

 
Now, we determine the difference nnnn Xhh ∈Γ−Γ , 
from (2.11), (2.13) we have 
 
( ) ( ) ( ) ( ) ( )( ) ( )( )

( )( ) ( )( )( ) ( ) ( ) ( )thGGthtt

thttQIth

nnnn

nnnnn

−+−−

−−−=Γ−Γ
−++

+−−

]

[

αψαψ

αψψ  

(2.14) 
where nψ  is polynomial of the best uniform 
approximation of the function ψ  with degree not 
exceeding n. 
From [Amer, 1996, Gakhov, 1966] and inequality (1.7), 
we have 

ϕϕ nn hdh 1≤±

( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )[ ] ( )
ϕϕ

ϕγαψαψαψψ th
n

dthttthtt nnnn ⎟
⎠
⎞

⎜
⎝
⎛≤−−− −+++−− 1
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ndQn ln3≤

ϕ
. 

Hence, we get 
( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )[ ] ( ) ( )

ϕϕ
ϕαψαψαψψ thn

n
dthttthttQI nnnnnn ln1

4 ⎟
⎠
⎞

⎜
⎝
⎛≤−−−− −+++−−

  

(2.15) 
where 3204 ddd γ= . 

Let ( )tJ n  be the polynomial of best uniform 
approximation to the function 

( ) ( ) ( ) ( ) τττ
π

dhtR
i
tctJ n

L
∫= , , 

Then from Amer (1996), we have 
                                                

ϕϕ
ϕ nn h

n
dJJ ⎟

⎠
⎞

⎜
⎝
⎛≤−

1
5 , 

hence for arbitrary nn Xh ∈ ,we get 
                                        

( )
ϕϕ

ϕ nnnn hn
n

dhGGh ln1
6 ⎟

⎠
⎞

⎜
⎝
⎛≤− ,         (2.16) 

where ndddnd lnln 5356 += . From (2.14)- (2.16), 
we get 
                                     

( )
ϕϕ

ϕ nnnn hn
n

dhh ln1
7 ⎟

⎠
⎞

⎜
⎝
⎛≤Γ−Γ ,     (2.17) 

where 647 ddd += . From Theorem 1.2 , the operator 

0Γ  has a linear bounded inverse operator 1
0
−Γ  , since 

hch Γ=Γ −1
0  then the operator Γ has a linear inverse, 
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also from Amer (1996) and by virtue of (2.17) the 
operator nΓ  has a linear bounded inverse. 
Now, for the right parts of (2.11) and (2.13), we have 
                                                    

.ln1~~
8 n

n
dgg n ⎟

⎠
⎞

⎜
⎝
⎛≤− ϕ

ϕ
               (2.18) 

From Amer (1996), and inequalities (2.17), (2.18) for the 
solution *h of equation (1.10) and the approximate 
solution *

nh  , we obtain 

n
n

dhh n ln1
9

** ⎟
⎠
⎞

⎜
⎝
⎛≤− ϕ

ϕ
. 

Thus the theorem is proved. 
From Theorem 2.1 there exists the number 0n  such that 

for arbitrary ),max( 0 χnn ≥  the SLAES (2.6) has the 

unique solution *h and the following inequality is valid:  
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( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) njdhutR
i

d
t

hu
i
tb

d
t

hu
i
ta

thutbthutahu

n
L

j
L j

nj

L j

nj
jnjjnjjn

2,0,,,1
)(

,

,
,),0,

=+
−

+

+
−

−+=Γ

∫∫

∫

τττ
π

τ
ατ
τ

π

τ
τ

τ
π

α                             

From Amer (1996), we have  
                                            

( ) ( )( ) ( ) ( ) n
n

du
HHnn ln1

11
0'

0 21 ⎟
⎠
⎞

⎜
⎝
⎛≤Ρ−Γ

→
ϕη

ϕϕ
.    (2.19) 

Since for arbitrary ( )χ,0nn ≥ , there exists a bounded 

linear inverse operator, ( ) ( )121 : ϕϕ HHn →Γ−  then from 
(2.19), Banach theorem follows that there exists 

( )χ,01 nn ≥  such that for arbitrary 1nn ≥ , the linear 

operator nj ,Ρ′ has bounded inverse, that is the SLAES 
(2.4) under condition (2.5) has the unique solution 

( )1*
ϕHh ∈  for arbitrary right side ( ) ( ) ,2

ϕHtgg j ∈=  

 nj 2,0= . Thus the following theorem is proved. 
 
Theorem 2.2 Let the coordinate of the vector 

( ) ( ) ( ) ( ) ( )( )00
0

0
1

00 ,...,,,..., nn ηηηηη −−=  be the Fourier 

coefficients the function ( )LHu ϕ∈0  and the conditions 

of Theorem 1.2 are satisfied and for 1nn ≥ ,  

( )( )( ) 0
10 εη

ϕ
′≤Ρ′

−

n  and 

( )( )( ) ( )( ) 1
010 εηη

ϕ
′≤ΡΡ′

−

nn . Then if 

2
1

110 <′′′=′ ερεm , then SNAES (2.3) has the unique 

solution ( )**
0

*
1

** ,...,,,..., nn ηηηηη −−=  in the sphere 
( )( )0
0 ;rS ′ηϕ  of the space ( )LHϕ , 

( )( ) rmmr ′≤′′−−′=′ −1
10 211ε , to which the 

following iteration process converges  

 ( ) ( ) ( )( )( ) ( )( )m
nn

mm ηηηη ΡΡ′−=
−+ 101  and the rate of 

convergence is given by the inequality: 

( )
1

1

1*

1
εηη

ϕ
′

−
≤−

B
Bn

m ; mB ′−−= 2111 . 

 
3. Illustrative  examples 
 We illustrate the above method by some 
problems. 
 
Example 1.  
     Consider the following integral equation 
                                    

( ) ( ) ttd
t

h
i

tht
L

+=
−

−− ∫ 32 1 τ
τ
τ

π
     (3.1) 

Where the contour L  is a unit circle in the complex 
plane. 
 
It is easy to find that the index of equation (3.1) equal to 
zero and the exact solution takes the form ( ) .tth =       
According to the collocation method the approximate 
solution of equation (3.1) takes the form (2.8), where the 
coefficients  kβ are defined from SLAE 
                       
( ) ( )( ) ( ) ( )( ) ( ) ,2,0,

1

0
njtgttbtattbta j

nk

k
jkjj

n

k

k
jkjj ==−++ ∑∑

−

−==
ββ  

(3.2) 
where  

jjjjjjj tttgtbttanijt +=−==+= 32 )(,1)(,)()),12/(2exp( π  
 (3.3) 

From relation (3.3) we get 
                              

( ) ( ) njtttttt jj
nk

k
jkj

n

k

k
jkj 2,0,11 3

1
2

0

2 =+=++− ∑∑
−

−==

ββ                     

(3.4)  
By solving SLAE (3.4) we found the approximate 
solution takes the form ( ) tthn =  for 2≥n . 
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Example 2.  
Consider the following integral equation 
                                    

( ) ( ) ( ) ( )122 2 −=
−

−
− ∫ td

t
h

i
ttht

L

τ
τ
τ

π
 (3.5)                                            

where the contour L is the circle 2/1=z  in the 
complex plane. 
 
 It is easy to find that the index of equation (3.5) equal to 
zero and the exact solution takes the form ( ) .12 −= tth       
According to the collocation method the approximate 
solution of equation (3.1) takes the form (2.8), where the 
coefficients  kβ are defined from SLAE (3.2); 
  

)1(2)(,2)(,)( 2 −=−== jjjjjj ttgttbtta  (3.6) 
From relation (3.6) we get 
                                

( ) njtttt j
nk

k
jkj

n

k

k
jk 2,0,11 2

1

0
=−=−+ ∑∑

−

−==

ββ      (3.7)             

By solving SLAE (3.7) we found the approximate 
solution coincides with the exact solution for 2≥n . 
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