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ABSTRACT

The paper is concerned with the applicability of the polynomial collocation method to a class of nonlinear singular
integral equations with a Carleman shift preserving orientation on simple closed smooth Jordan curve in the generalized

Holder space H (L) The method is illustrated by considering some simple examples.
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INTRODUCTION

Nonlinear singular integral equations are widely used and
connected with applications in several field of
engineering mechanics like structural analysis, fluid
mechanics and aerodynamics. This leads to the necessity
to derive solutions for the nonlinear singular integral
equations arising in applications, by using some
approximate and constructive methods, (Ladopoulous,
2000). The theory of nonlinear singular integral equations
with Hilbert and Cauchy kernel and its related Riemann-
Hilbert problems have been developed in works of
Pogorozelski (1966), Guseinov and Mukhtarove (1980),
Wolfersdorf (1985) and Ladopoulous (2000).

The successful development of the theory of singular
integral equations (SIE) naturally stimulated the study of
singular integral equations with shift (SIES). The Noether
theory of singular integral operators with shift (SIOS) is
developed for a closed and open contour (Kravchenko and
Lebre, 1995; Kravchenko and Litvinchuk; 1994).
Existence results and approximate solutions have been
studied for nonlinear singular integral equations (NSIE)
and nonlinear singular integral equations with shift
(NSIES) by many authors among them we mention (Amer
and Dardery (2004, 2005, 2009), Amer and Nagdy
(2000), Amer (2001, 1996), Jinyuan (2000), Junghanns
and Weber (1993), Ladopoulous and Zisis (1996),
Ladopoulous (2000), Nguyen (1989) and Saleh and Amer
(1992).

The classical and more recent results on the solvability of
NSIE should be generalized to corresponding equations
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with shift (Wolfersdorf, 1992). The theory of SIES is an
important part of integral equations because of its recent
applications in many field of physics and engineering
(Baturev et al., 1996; Kravchenko et al., 1995;
Kravchenko and Litvinchuk, 1994).

We consider a simple closed smooth Jordan curve L in
the complex plane with equation t = t(s), 0<s<lI
where s-arc coordinate accounts from some fixed point,
| -length of the curve L. Denote by D™ and D the
interior and exterior domain of L respectively and let the
origin be 0 € D*. Denote by L, the unite circle with
the center at the origin and let L,” and L, the interior

and exterior domain of L, respectively. Consider the

conformal mappings A(r) from L, onto D~ such that

Aw)=00, limA(r)r™ >0 and B(r) from L,
r—oo

onto D such that B(oo) =0.
Now, consider the following NSIES:

(P(u))t) = ¥, (& u(t)) + ¥, (er(t) ulet)) -
1 J{‘PS(T,U(T))QPAr,U(r))}

iy Tt 7—a(t)
dr=f(t) forall tel

(0.1)

Under the following conditions
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U4 (t! u, (t)) =V (t! u, (t)) = a(t) )
W (@), Uy (@) = =y, (a(t), Uy (a(1))) =b(t). (0.2)

for initial value u,, in the generalized Holder space
H,(L), u(t)is f(t) and

Y, (t,u(t)), r =1,...,4, are continuous functions on L
and on the domain

unknown  function,

D={tu):tel,ue(-m,x),

respectively, and the homeomorphism «:L — L is
preserving orientation, satisfying the Carleman condition

ala(t)) =a,(t)=t, tel, (0.3)
and the derivative a'(t);t 0 satisfies the usual Holder
condition.

The equation (0.1) in case f(t)= 0 without shift has

been studied in Amer and Nagdy (2002) by modified
Newton-Kantorovich method in the generalized Holder
space H, . [a,b].

In this paper the polynomial collocation method has been
applied to NSIES (0.1) under condition (0.2), with zero
index, in the generalized Holder space H , (L).

1. Some auxiliary results.

Definition 1.1. We denote by qu,l(D) to be the space

of all functions ‘¥, (t,u(t)), r =1...,4, which have

partial derivatives up to second order with respect to U
and satisfy the following condition

“//mi(tl’ul)_wml(tzlu X
, (1.1)

where (ti,ui)e D,
=01,2.

i=12, pe® and CJT are

constants; |

Definition 1.2 (Guseinov and Mukhtarov, 1980; Mikhlin
and Prossdorf, 1986). We denote by C(L) the space of
all continuous functions u(t)defined on L with the
norm:

||u ”c(L) - r?e"’ll_x|u(t)| : 1.2)
Definition 1.3 (Amer, 2001; Guseinov and Mukhtarov,
1980). We denote by H (L) the space of all functions

;{¢Qtl —t2|)+|u1 —Uy

u(t) e c(L) such that e, (5) = o(e(5)), @ € HD,

with the norm:

[ul, =lull +lul: (1.9

_aup @)
Juf=sup“> 5

|
Hd ={¢e®:£%d§+5£§d§s 6@(5)} ,
C is a positive constant.

Definition 1.4 (Amer, 2001; Kravchenko and Litvinchuk,
1994). Let S: Hq)(L)—) HW(L) denotes to the

operator of singular integration

(su)t)= ﬂledr |

14
" (1.4)

to which we associate the Cauchy projection operators
1
P, :E(IJ_rS), S?=1 (1.5)

where | is the identity operatoron H (L) The Carleman

v(alt)).

Lemma 1.1 (Amer, 2001). The singular operator S is a
bounded operator on the space H (L) and satisfies the

shift operator
W :H,(L)—> H,(L). isgiven by (Wy)t)=

inequality
Isul, < 2o,

where p, is a constant defined as follows :

P = cl[]i%g)dcf +1j +¢,C,

~

where C,, C,, C are constants.

(1.6)

Lemma 1.2 (Amer, 2001). The shift operator W is a
linear bounded continuously invertible operator on the

space Hw(L) and satisfies the inequality
[wul', <roful,
where 7, = max{l,a, }and a, is a constant given by

o =SUp o 553 a(t)=u(a(t)).

1.7

Lemma 1.3 (Amer and Dardery, 2009) Let the functions
l//r(t,U), r=1,...,4, belong to H(p’l(D) . Then the
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operator P(u) is Frechet differentiable at every fixed
point ueH (L) , moreover

P (W)h =y, (LU®)h(t) +y, (@), u(a(t) hla(t) -

d J‘{WSU (T U(T)) l//4u (T U(T))}h( ) d T, (18)
o ! -t ®
satisfies Lipschitz condltlon
P'w) P W), <pfu-ul, (L9)

in the sphere s _ (u

0if)= {u eH, (L):|u-u, < r},
where
PL= (Cll + 708y + PoC; +70pocl4)-

Under condition (0.2), the equation (1.8) reduces to the

following SIES, for the unknown function h(t) :

I = aO)h@) + blt) () - 20 7o h@) 4
a L r—t (1.10)

jR(t th(z) dz = f(t),

b(t 1

)I (r) o1
LT —

for initial value U, and the arbitrary function f (t) belong
to the space H , (L),

where
R(t, T) _ W3y (t, u 0 (t)) _l/:3u (T’ u 0 (T))
r—
L Vau (@), Uo (@)~ (7, U, (7))
r—a(t)

Using Definition 1.4 the dominant equation of equation
(1.10) reduces to the following singular integral operator
with shift :

M = 2a(t)P_ + 2b(t)WP, . (1.11)

Theorem 1.1 (Amer and Dardery, 2009; Kravchenko and
Litvinchuk, 1994). The singular integral functional

operator M is Noetherian on H (L) if and only if

infe(t) >0 and q(t)=0, onL,

where

oft) = 2b(t). q(t) = %;b(t);t donL.

The index of a Noetherian operator M is given by
=indM = >

larga(V),

Theorem 1.2 (Amer 2001; Saleh and Amer, 1992). Let
the conditions of Lemma 1.3 and Theorem 1.1 be satisfied

(1.12)

and u, € H_(L) is the initial approximation for equation
(0.1) under conditions (0.2), H(p (u

[P ) Pl)|
equation (0.1) under conditions (0.2) has a unique
solution U in the sphere g ,(ug;r,) Of the space H (L)

—81( V1- Zm)n <r, to which the successive
=u, —(P'(u,))*P(u,) of modified

Newton method converges and the rate of convergence is
given by the inequality:

£ B=1-+1-2m

))71H¢, & and

<g- Thenif m=g,p& <%, then

approximations: u_ ,

4

2. Collocation method.
Now, we seek an approximate solution of equation (0.1)

under conditions (0.2) in H 0 (L) as the form:

t): Zﬂktk ;

k=-n

21)

where the coefficients 77, are defined from the system of
nonlinear algebraic equation with shift (SNAES)

Wt bt + woladt ) un . alt;))
_ij'|:l}l3(rlun(77vr))+ Falr ) g ()

ﬂ'iL T -1 r—a(t;)

2.2)

where t, = exp(27j/(2n +1)), j=0,2n.

Consider (2n+1)- dimensional spaces H(f,l) and H;Z)
with the norms:

il =l ),

lu
= max‘

[ - <sup 9

Ju

respectively, where 7 = (;7_” ,._.,,7_1',70’_._’,7“)6 H® and

U=(Up,..,Up)e HE.

Introduce the operator P, (17): H{” — H? where

Py )= 94,0 .t )+ Walelt ot )
1 J{w,un(n,rm Fuleuln.o)],

ﬂ'iL Tt r—a(t))

We can rewrite SNAES (2.2) in the operator form:

r, j=0,2n

P(7)=f; f=*() j=02n 2.3)
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Consider, the coordinates of the vector 77(0) from qu,l)

these are the Fourier coefficients of the function
U, eH (L) that is

(0)__J‘u
=2m_£|;u0 Aw

Analogous to Lemma 1.3 the following lemma is valid.

w i dw, j=0,n and

Jwtdw, j=-n,~1.

Lemma 2.1. Amer (1996) Let the conditions of Lemma
1.3 be satisfied. Then the operator P, is Frechet

differentiable at every fixed point x = (77 na ,Un)e H, o
Moreover

Pl OO =y, (t,u, (X, ) Uy (0 t)
oy (a(t;), u, (X, a(t) u, (h, alt))) -
1 J'{'//:m (U 2) Y, (7Un( )

}un(h,r) dz, j=02n

r—oft;)
where  h=(h_,..,h )e HS), the  derivative
Pn (X) = (PO n( ) 2n n (X ) SatiSfieS
Lipschitz condition
1) _Pn‘(xz L < /01, H X - XZH HO
in the sphere 8(77(0) ; rl) of the space HS) , where p,

is a positive constant.
Now, we show that the system of linear algebraic
equations with shift (SLAES):

P (7@ h=g,

under the conditions

(24)

W (.U, (79, 1))) =y, (1,0, % 1)) =a(t;), (25)
V/Zu(a(tj)!uo(ﬂ la(tj))):

~yau (@)U, (7, a(t)) =b(t;).

heH(/()l) for

has a solution

9=(go

unique
an ) € Hq(JZ) )

arbitrary

For this aim, we consider the SALES:

alt; Ju, (h,t))+blt, Ju, (halt, ) -
—a(tj)J. Uy (. 7) dr+ b(tj)j Un . 7) dr+

7 Tt 7 Lr—a(tj)

+%_I':Rt T T)dz':g(tj), j:m (2.6)
corresponding to the SIES:
_a(t) fu@) b(t) f u(z)
a(t)u(t) + b(t)u(a(t) - ]’:T—_tdz'-k ; '[Ta(t)dﬂ

+;‘[ R(t,7)u(z) dz =g(t), 2.7)

According to the collocation method, we seek an
approximate solution of equation (1.10) as the form :

t)= zn:ﬁktk, tel,

k=-n

where the coefficients /3, are defined from SLAES:

(2.8)

(2.9)

ZAJkﬁk— (t,) i=02n

where

1 X
A :a(tj){tlj( —gj—dr}b(tj)
T—tj

[(am A T]+mj R, b (e

The SLAES (2.9) can be rewritten as following form:

2(t )Zﬁktk +bfe )Zﬂk( () + = [R(0)

S fetdr =gl j=02n
k=-n

(2.10)
Where

W CIUTORES A
Theorem 2.1. _Let a(t),b(t) a_r;:j g(t) belong to
H(p(L), b(t)#0 on L, the index 7 =0 and the

operator P’ has a linear inverse in H(/,(L) , then for all

n>max(n,, 7),
N, —mln{ne N : dlgo(njlnn<1} , the system
il

hi(t) Z,Bktk of equation

k=-n

(2.10) has the unique solution and the

approximate solution
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(1.10) convergences to its exact solution h”, moreover
* * 1
h(t)- hn(t)ﬂw < dzgo(ﬁjln n,

where d, and d, are constants do not depend on n.
Proof.

From [Gakhov, 1966], we can write equation (1.10) in
the following form:

- IR(t,r)h(r)dT =¥,

et)ri (t
setting
at) = et)
v (t)
Then we have
'h=Bh+Gh=g. (2.11)
Where

(Bh)t) =y (h (a(t) -y (a(t)h(t)
(2.12)

7Z'|
L

where )/(t) is the inverse a(t) and p(t)is a solution of
the Fredholm integral equation of second kind

) 262 o -naty)

zitla(r)-«a

Moreover, B is linear and G is completely continuous
from H(/,(L) into itself.

Denote by X, to be the (2n+1)- dimensional subspace of

the space H W(L), and let Q,, be the projection operator
into the set of interpolation polynomial of degree n with
respect to the collocation points t;, j =0,2n. Then the

system (2.10) can be written in X, as a linear operator

1—‘nhn = Bnhn +Gnhn = gn’
where

(2.13)

Bnhn :Qthn’

G,h, =Q,Gh,. §,=Q,7.
Now, we determine the difference I'h, —I" h € X,
from (2.11), (2.13) we have

(C=Fh )= (- QX () - v, (O (a(t) -

-y (@) - vy () 1+ (G -G, )h, (1)
(2.14)
where / is polynomial of the best uniform
approximation of the function y with degree not

exceeding n.
From [Amer, 1996, Gakhov, 1966] and inequality (1.7),
we have

h,
4

b~ )=z @O ()~ b () -v; (D

and

|Qu[, <dsInn.

Hence, we get

0=l €)= O el0) - wl) - Db ], <ol Jinn ],

(2.15)

<dyha],

0], < e T,

where d, =y,d,d;.

Let Jn(t) be the polynomial of best uniform
approximation to the function

J(t):% [RE,o)h, (o,

L
Then from Amer (1996), we have

-], = deof 2l

hence for arbitrary h € X we get

lGh, -G, <d6¢)( j(lnn}h . (2.16)

where d;Inn=d; +d,d, Inn. From (2.14)- (2.16),

we get

(2.17)

I, -1, < 4ol 2 finn
where d, =d, +d. From Theorem 1.2 , the operator
I', has a linear bounded inverse operator Fo‘l , since

[,h=c™Th then the operator I has a linear inverse,
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also from Amer (1996) and by virtue of (2.17) the
operator I’ has a linear bounded inverse.
Now, for the right parts of (2.11) and (2.13), we have

~ =~ 1
|3-3.], < dg@(ﬁj Inn. (2.18)

From Amer (1996), and inequalities (2.17), (2.18) for the

solution h’” of equation (1.10) and the approximate
solution h;, we obtain

< dggo(ljlnn.
¢ n

Thus the theorem is proved.
From Theorem 2.1 there exists the number N, such that

for arbitrary n > max(n,, y) the SLAES (2.6) has the

Hh* —h

unique solution h”and the following inequality is valid:

u:(h*,.)—u*(.j‘w < dlo(p(ijln n,

where U~ € H(/,(L) is the unique solution of (2.7). Let

1—‘h (UO )h = (FO,n (uO )h""’ an,n (UO )h)

where

£y e =al o) bl o ) - 2 e

i
,_th

btJ .(h, 1 R
+£zi){%dr+m{R(tj,z’)Jn(h,r)dr, j=0,2n

From Amer (1996), we have

‘Fn (ug) P, (U(O)X‘HQMH;Z) < dﬂgo(%jlnn. (2.19)

Since for arbitrary n > (no,;(), there exists a bounded

linear inverse operator, I'," : H;Z) - H(f,l) then from
(2.19), Banach theorem follows that there exists
n, = (no,;() such that for arbitrary n = n,, the linear
operator P;,n has bounded inverse, that is the SLAES
(2.4) under condition (2.5) has the unique solution
h™ e HS) for arbitrary right side g = g(tj )e H(Ef) :

j =0,2n. Thus the following theorem is proved.

Theorem 2.2 Let the coordinate of the vector

77(0) = ( E?]),...,nfg),7730),...,77510)) be the Fourier

coefficients the function U, € HQ(L) and the conditions

of Theorem 1.2 are satisfied and for n > n,,

‘(PI: (77(0)))_1” < g; and
4

o267 e, )

m' =gy pi&; < %, then SNAES (2.3) has the unique
solution 7" = (nfn,...,nfl,n;,...,n:) in the sphere
S, (77(0); ro’) of the space H , (L),

) = &/{l—I—2m"fm')* <1, to which the

following iteration process converges

n™ =M™ —(Pr: (n(o)))_an (n(m)) and the rate of
convergence is  given by the inequality:

el B =1-+1-2m’.

‘ < g/ Then if
4

*

B/
<
»~1-B,

=

3. lHlustrative examples
We illustrate the above method by some
problems.

Example 1.
Consider the following integral equation

tzh(t)——ijMdrtht (3.1)

7l Lr—t

Where the contour L is a unit circle in the complex
plane.

It is easy to find that the index of equation (3.1) equal to
zero and the exact solution takes the form h(t) =1.

According to the collocation method the approximate
solution of equation (3.1) takes the form (2.8), where the

coefficients /3, are defined from SLAE

(alt, )+ blt,)>: At +(alt;)-blt, ) iﬂﬁktﬁ ~glt;) j=02n,

k=0 k

(3.2
where
t; =exp(27j/(2n+1)), a(t;)=tZ, b(t;)=-1 g(t;)=t5+t,
(3.3)

From relation (3.3) we get

(12 1> it 4t +1)iﬂkt,-k =tj+t;, j=02n
k=0

k=-n
(3.4)
By solving SLAE (3.4) we found the approximate

solution takes the form h, (t)=t for n > 2.
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Example 2.
Consider the following integral equation

th(t)—ﬂjﬁdr =2(t? -1)

, (3.5)
7l sr—t

where the contour L is the circle |Z| =1/2 in the
complex plane.

It is easy to find that the index of equation (3.5) equal to
zero and the exact solution takes the form h(t) =t° 1.
According to the collocation method the approximate
solution of equation (3.1) takes the form (2.8), where the
coefficients 3, are defined from SLAE (3.2);

a(t;)=t;, bt;)=2-t,, g(t;)=2(t7 -1 (36)
From relation (3.6) we get

anﬂkt?Jr(tj —1)iﬂktjk=tf—1, j=02n (37
k=0 k=-n

By solving SLAE (3.7) we found the approximate
solution coincides with the exact solution for n > 2.
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