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The rise in global temperature is due to the increase in 
greenhouse gases, primarily in the form of carbon dioxide 
(CO2) - which has a rate of increase five times larger than 
before the pre-industrial era (Jansen et al., 2007). 
Historical atmospheric levels of CO2 obtained from 
glacial ice cores (Etheridge et al., 1998) can be combined 
with atmospheric CO2 levels collected on Mauna Loa in 
Hawaii (Keeling et. al., 2004; Pales and Keeling, 1965) to 
provide a record dating from the geologic past. Monthly 
readings at Mauna Loa since 1958, and now expanded to 
a network of worldwide sampling stations, provide 
essentially real-time monitoring of atmospheric CO2 
levels. 
 
 

Concurrent with this rise in atmospheric CO2 has been a 
decrease in the intensity of the Earth’s protective shield: 
the geomagnetic field. Historical ship logs and magnetic 
observatories offer a record of geomagnetic intensity from 
the 1600’s to the present (Jackson et al., 2000; Gubbins et 
al., 2006). These records show that the intensity of the 
geomagnetic field (F) was relatively stable prior to the 
late-1800s and then began a sharp decrease; in the last 
hundred years F decreased approximately 5% (USGS, 
2011). A plot comparing the global average in magnetic 
field strength (i.e. the geomagnetic coefficient, “g10”) 
with the increase in atmospheric CO2 from the 17th 
century to the present reveals an inverse association (Fig. 
1), with notable divergence starting in the mid-nineteenth 
century.   
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Fig. 1. Historical comparison of CO2 levels with the geomagnetic field strength.  Atmospheric CO2 levels (a) mirror 
the global geomagnetic field strength (b) from the 16th century to present day [data source: (Gubbins et al., 2006; 
Etheridge et. al., 1998)]. 
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The use and worldwide distribution of magnetometers 
starting in the late-1800’s has generated an continuous 
record of F for the last hundred years, with nanoTesla 
(nT) accuracy. The World Data Center (WDC) for 
Geomagnetism in Edinburgh houses this comprehensive 
set of precise geomagnetic data which is supplied from a 
worldwide network of magnetic observatories (World 
Data Center, 2011).  Using data archived at WDC, 
globally distributed ground-based magnetometer stations 
were identified that had continuous recordings in F from 
the start of the twentieth century to the present, with non-
linear trends in the mid-1900’s similar to those obtained 
by other methods (Gubbins et al., 2006; Fig. 1b). Scatter 
plot analysis of F vs. CO2 for this timeframe (Fig. 2) 
reveals a strong negative correlation (R2 = - 0.94). This 
relationship is conserved well in the time derivative, 
which shows concurrent local maxima/minima and 
inflection points (Fig. 3). 
 
The observations reported here demonstrate that the 
increase in atmospheric CO2 exhibits strong temporal 
correlation with a natural phenomenon, namely the 
decrease in intensity of the geomagnetic field. This 
association is conserved in the time derivative, arguing 
against an incidental trend. A model that accounts for this 

inverse association is not straightforward. The global CO2 
cycle involves interaction between the atmosphere, 
biosphere and hydrosphere; a relationship between F and 
this cycle has not been established. Recently Pazur et al. 
(2008) presented evidence that microTesla (µT) changes 
in a magnetic field could influence the solubility constant 
of CO2 in seawater (Pazur and Winklhofer, 2008).  In 
their study, a controlled decrease in F resulted in an 
increase in released CO2. This work was met with 
skepticism, however, due to potential flaws in the 
experimental design (Köhler et al., 2009).  An alternative 
association between F and CO2 may be found in the 
influence of F on photosynthesis itself. Several reports in 
the field of biomagnetics have now observed differences 
in plant growth and CO2 uptake following exposure to µT 
strength magnetic fields (Yano et al. 2004; Huang and 
Wang, 2008). Although these studies were for relatively 
short time periods (~ 2 weeks), the trend in the CO2 
response tracked inversely with F -- consistent with the 
observations reported here. These analyses suggest a 
possible interaction between F and atmospheric CO2. This 
putative relationship appears to be limited to the last few 
centuries, however, as paleomagnetic intensity 
reconstructions do not correlate with ice core CO2 records 
over geologic timescales (Köhler et al., 2009).   
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Fig. 2. Correlation of Atmospheric Carbon Dioxide with Global Magnetic Field.  Scatterplot analysis of yearly global
CO2 concentration versus the relative global magnetic field intensity (F) for years 1900 to 2007. Dotted line is best fit
using linear regression; correlation coefficient is shown, ρ < .001 using a matched pair t-test (MATLAB, R2008b).  
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Fig. 3. Time derivative for CO2 and geomagnetic field.  (a) dCO2/dt and (b) dF/dt; F is presented as negative (-)
values to show the inverse relationship. Solid line in graphs is empirical data smoothed using a 5-year moving
average; dotted line is curve of best fit. 
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