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ABSTRACT 

 
We modeled time dependent transport of oxygen in peripheral nerve by the simulation of steady-state oxygen tension, 
diffusion, chemical reactions and consumption of oxygen in capillaries using Krogh cylinder symmetry. These 
parameters were assumed to change rapidly to new. To characterize the approach of the oxygen tension to a new value, a 
monoexponential function is defined. Diffusion of oxygen is radial from capillary to a surrounding cylinder tissue and 
from arterial distance to veins, diffusion is axial. The time-dependent transport of oxygen is peripheral nerve with 
forward and backward reactions including first-order chemical kinetics has been considered, which makes this model 
different from the earlier studied models. We used Finite difference technique for the solution of this model. 
 
Keywords: Nerve oxygen consumption, peripheral nerve, oxygen transport, tissue, forward and backward reaction, first 
order chemical kinetics. 
 
INTRODUCTION 
 
Through a physical solution in water oxygen is 
transported by the blood partly with hemoglobin. This 
transport is affected by forward and backward reactions. 
Kreutzer (1982) shows a comparison of oxygen 
consumption following zero-order, first -order or 
Michaclies-Menten kinetics in a plot of the peripheral 
tissue oxygen pressure against capillary length shows that 
kinetics of zero-order provides the lowest values but 
Michaclies-Menten and first-order kinetics having higher 
value of oxygen pressure both in capillary as well as in 
tissue. Krogh (1919) and Reneau et al.  (1967) formulated 
mathematical models of the release of oxygen from 
hemoglobin and diffusion from capillaries into 
surrounding tissue in various cases. After this Reneau et 
al. (1969) considered time-dependent aspects of transport 
of oxygen.  
 
Low et al. (1986) established that peripheral nerve tissue 
could resist moderate degrees of ischemia or hypoxemia 
and continue to conduct impulses for minutes to hours. 
This is not true for brain nerve. The mechanisms of the 
relative resistance of a peripheral nerve to ischemia are 
not completely known. The role of hemoglobin and 
myoglobin is facilitating oxygen transport to tissue. A 
totally different approach to the mathematical study of 
oxygen transport to tissue intended to describe on large 
scale, convection and diffusion of oxygen occurs over a 
very large distance within the tissue. Diffusion is the 
process whereby particles of liquids, gases, and solids 
blend together as the result of their spontaneous 

movement caused by thermal campaigning and dissolved 
substance moves from higher to lower concentration. 
Similarly, in the human body, transport of oxygen occurs. 
Lagerlund and Low (1993) studied transport of oxygen 
and diffusion process in peripheral nerve is steady-state. 
A non steady state condition which effects a sudden 
change in arterial oxygen tension blood flow velocity or 
nerve oxygen consumption rate on the distribution of 
oxygen tension in endoneurial tissue around a capillary. 
Sharan et al. (1997) examined the transport of oxygen in 
the blood flowing through the systemic capillaries, the 
blood has been considered as a homogenous model for 
transport of oxygen in the capillary and surrounding 
tissue. 
 
Sharma et al. (2004) investigated endoneurial oxygen 
transport in capillary and a surrounding Krogh cylinder of 
tissue with forward and reverse chemical reaction. A 
sudden change in arterial oxygen tension affects blood 
flow velocity and nerve oxygen consumption rate with 
forward and backward reactions. 
 
The objective of the present study was to investigate 
endoneurial transport of oxygen in capillary and a 
surrounding cylinder of tissue with generation or 
degeneration in oxygen due to forward and backward 
chemical reaction in capillary, but a first-order chemical 
kinetics for tissue.  
 
MATHEMATICAL MODEL  
 
We used a modified version of the mathematical model of 
Reneau et al. (1969) for the calculation of endoneurial 
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oxygen profiles as a function of time by numerical 
solution of differential equations which describe the 
oxygen transport in a capillary and a surrounding cylinder 
of tissue(the Krogh cylinder). In the capillary region, 
transport of oxygen takes place both by convection and by 
diffusion, and oxygen is generated due to its dissociation 
in the hemoglobin inside the red blood cell and its 
transport to the blood plasma across the cell membrane, 
there is only diffusion of oxygen in tissue region by the 
tissue cells. We assume that P(r, x, t) be the partial 
pressure of oxygen. r is the radius of capillary v(r, t) the 
velocity of blood in the fully developed flow in the 
capillary. To calculate the partial pressure P in the 
capillary the differential equation is: 
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Where kf and kr are the rate of forward and backward 
reaction due to erythrocyte boundaries. x is the distance 
along the capillary from the arterial end i.e. axial 
coordinate, r is the distance from the capillary centre i.e. 
radial distance, t is time, Db is the oxygen diffusivity in 
blood, v is the velocity of flowing blood, Sb is the 
solubility of oxygen in blood, Cb is the oxygen content of 
blood, η  is the Hill’s coefficient for the hemoglobin 
dissociation curve, P50 is the oxygen tension for 50% 
hemoglobin saturation. 
 
The model for the partial pressure /P (r, x, t) in the tissue, 
are given by partial differential equation: 
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The terms including second partial derivative with respect 
to x and with respect to r, are the axial & radial diffusion 
of oxygen from capillary into surrounding tissue. Dt the 
diffusivity of oxygen in tissue [Michael’s-Menten], St   
Oxygen solubility in tissue, and C is the consumption rate 
of tissue oxygen and given as: 
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Cmax   is the value of consumption rate at very high 
tension; C50   is a constant representing the oxygen tension 
at which consumption decreases to 50% of its maximal 
value. Equation (1) and (3) are solved simultaneously 
following by the boundary conditions: 
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Here Pa is the arterial oxygen tension, cr  capillary radius, 

tr  radius of Krogh tissue cylinder (one-half of 

intercapillary distance), l  is the capillary length. Equation 
(5) states that there is no axial diffusion into tissue 
cylinder at the arterial end, Equation (6) specifies the rate 
at which oxygen diffuse axially out of the venous end of 
the capillary as a function rS . Equation (7) states that 
there is no radial diffusion at 0=r (from the capillary 
centre). Equation (8) is the continuity of tensions at the 
capillary wall.  Equation (9) uses a non- zero value for 
axial diffusion of oxygen out of the venous end of the 
tissue cylinder because this seems to represent better the 
actual situation than would a value of zero. Here the axial 
derivative of /P in tissue is arbitrary taken to be equal to 
its value at the capillary wall by Reneau et al. (1967). 
Equation (10) guarantees that the rate of diffusion out of 
the capillary equal to the rate of diffusion into the tissue at 
the capillary wall. Equation (11) is for the fact that there 
is no radial diffusion of oxygen out of tissue cylinder. 
Equation (12) specifies the initial oxygen tension P (at 
time t=0at each point is equal to the steady-state oxygen 
tension ( )xrP ,0 , calculated as a solution of equation (1) 

and (3) at the initial values of parameters ( ia PP = , ivv =  
and vCC =max ) with time derivative set at zero i.e. totally 
steady-state condition. After time t=0 these parameters are 
as follows: 
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Where iii CvP ,, are initial values; 
fff CvP ,,  are final 

values; cvp τττ ,,  are time constant that determine the 

rate of change of vPa ,  and
maxC . Equation (13) is for the 
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radial dependence of capillary oxygen tension at the 
arterial end. Here the radial diffusion outward from the 
capillary centre. In this study we solve equation (1) and 
(3) analytically as well as numerically, only numerical 
solution we considered for the first-order chemical 
kinetics to calculate the oxygen tension in tissue. There is 
a good agreement between previous results and ours.  For 
the numerical solution of equation (1) and (3) we use 
finite difference technique. 
 

RESULTS AND DISCUSSION 
 
Figure 1 shows oxygen tension time profiles at point near 
the arterial end of the capillary when the arterial oxygen 
tension changes from normal to 50% of normal with time 
interval 0.1 second. 
 
Similarly figure 2 shows oxygen tension time profiles at 
maximum distance from the arterial end, it is clear from 
the figure 2 that oxygen tension changes sharply at points 
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Fig. 1. Time profiles of tissue oxygen tension at arterial end of capillary for various radial distances from capillary
centre for 50% of oxygen tension with time constant 0.1 second. 
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Fig. 2. Time profile at the maximum distance from capillary for various axial distances for 50% of oxygen tension
with time constant 0.1 second. 
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near the capillary and near arterial end. A single 
exponential function is used to express the time course of 
changing the oxygen at all locations excepting points near 
arterial end and near the capillary end, for these excluding 
points, a biexponential function is used.  
 
There is a small variation in figure 1 and figure 2, due to 
the first order chemical kinetics. If we take k=1 then 
pervious results occurs smoothly. This changed reaction 
gives good results numerically. Figure 3 shows an axial 

profile of fast rate constant for various capillary centres 
when arterial oxygen tension changes from normal to 
50% with time constant 0.1 second. Here fast rate 
constant decreases with increasing radial and axial 
distance up to an abrupt transition point at which the 
oxygen-tension profiles become monoexponential. 
 
From figure 4 and figure 5, it is clear that an increase in 
the arterial oxygen tension rate of change increases the 
fast rate constant but has little effect on either the slow 
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Fig. 3. Axial profiles of fast rate constant for various capillary centre when arterial oxygen tension changes from 
normal to 50% with time constant 0.1 second. 
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Fig. 4. Axial profile of slow-component    contribution when arterial oxygen  tension changes from normal to 50%
with time constant 0.1 second. 
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rate constant or the slow-component contribution. As 
soon as flow velocity increases slow rate and fast rate 
constant decreases. 
 
CONCLUSION 
 
A Solution of Mathematical Model for Transport of 
Oxygen in Peripheral nerve with first-order chemical 
kinetics using finite-difference technique during 
Pranayama is obtained in this study. The transport of 
oxygen in peripheral nerve with forward and backward 
chemical reactions is time-dependent, analyzed using 
finite difference technique. The chemical reactions as well 
as new factor (K) (in first order chemical kinetics) were 
observed to affect the time profiles of tissue oxygen 
tension in the body with a time step 0.1 second.  
 
REFERENCES 
 
Kreuzer, F. 1982. Oxygen supply to tissue: The Krogh 
model and its assumptions. Experientia. Birkhauser 
verlag, CH-4010 Basel/Switzerland. 38:1415-1426.  
Krogh, A. 1919. The number and Distribution of 
capillaries in muscles with calculations of the oxygen 
pressure head necessary for supplying the tissue. Journal 
of Physiology. 52(6):409-415. 
Low, PA., Schemlzer, JD. and Ward, KK. 1986. The 
effect of age on energy metabolism and Resistance to 
ischaemic conduction failure in rat peripheral nerve. 
Journal of Physiology. 374:263-271. 

Low, PA., Ward, K., Schmerzer JD. and Brimijon, S. 
1986. Ischemic conduction failure and energy metabolism 
in experimental diabetic neuropathy. American Journal of 
Physiology. 248:E457-E462. 
Lagerlund, TD. and Low, PA. 1993. Mathematical 
Modeling of time-dependent oxygen transport in rat 
peripheral nerve. Journal of Computational Biology 
Medicine. 23:29-47. 
Reneau, DD., Bruley, DF. and Knisely, MH. 1967. A 
mathematical simulation of oxygen release, diffusion and 
consumption in the capillaries and tissue of the human 
brain, proceedings of the 33rd Annual chemical Engg. 
Symposium. Plenum press, Cincinnati. 135-241. 
Reneau, DD., Bruley, DF. and Knisely, MH. 1969. A 
digital Simulation of transient oxygen transport in 
capillary tissue systems: development of a numerical 
method for solution of transport equations describing 
coupled convection-diffusion systems. AICHE Journal. 
15:916-925. 
Sharan, M.  Singh, B. and Kumar, P. 1997.  A two layers 
model for studying the effect of plasma layer on the 
delivery of oxygen to tissue using a finite element 
method. Journal of Applied Mathematical Modeling. 
21:419-426. 
Sharma, GC. and Jain, M. 2004. A Computational 
solution of Mathematical model for oxygen transport in 
peripheral nerve. Journal of Computers in Biology and 
Medicine. 34:633-645. 
Received: Feb 26, 2010; Revised: Dec 21, 2010; Accepted: Jan 25, 2011 

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

30

35

40

45

50

time

sl
ow
 ra
te
 c
on
st
an
t

4.5 capillary radius
16.2
27.9
39.6

 
Fig. 5. Axial profile of slow rate contribution when arterial oxygen tension changes from normal to 50% with time 
constant 0.1 second. 


