
SENRA Academic Publishers, Burnaby, British Columbia
Vol. 5, No. 1, pp. 1449-1453, Feb 2011
Online ISSN: 1920-3853; Print ISSN: 1715-9997

1

ARCHITECTURE FOR SCALABLE WEB SERVICES SOLUTION

*Godspower Ekuobase and Emmanuel Onibere
Department of Computer Science, University of Benin, Benin City, Nigeria

ABSTRACT

The fresh ambition to make computers seamlessly interoperable in dynamic and heterogeneous systems triggered the
rush on Web Services by the computing community. We established that this rush may lead us into shambles unless we
address the issue of poor scalability of Web Services. We have examined the technology to unveil the root cause of its
poor scalability and figure out a key to improving it. Web Service support for replication was identified as one such key.
We examined available replication schemes with a view to determining the one most suited to Web Services. The three
tier replication scheme appears to have stood out. We have explored the possibility of making Web Service support this
replication scheme in building scalable Web Services solution by application programmers. The result is proposed
Replication Oriented Architecture (ROA) for building Web Services solution. ROA is unique in its application of
replication to Web service in that it employs a non conventional replication technique; it is server side oriented and
transparent to consumer applications. ROA solutions therefore free Web Services consumers from issues of Web
Services server selection schemes. This proposed architecture however has some critical issues which were also exposed.

Keywords: Web services, software architecture, scalability, replication, web services solutions.

INTRODUCTION

The integration and interoperability problem of
heterogeneous systems is not only a threat to globalization
but also erodes the value we get from Information
Technology (IT) as investments on IT increases
(Williams, 2003; Weerawarana et al., 2005). Already,
60% of IT cost is absorbed by effort directed at making
computers seamlessly interoperable (Williams, 2003) and
some companies now receive less benefit from IT, even as
they increase their spending on it, because of
interoperability problem (Weerawarana et al., 2005).

There is however some hope as Web Service promises to
provide unparalleled solution to this problem (Bichler and
Lin, 2006; Weerawarana et al., 2005; Birman, 2005a,
Hogg et al., 2004; Chung et al., 2003; Vawter and
Roman, 2001). With its promises which include:

a. Reduced intra and inter-enterprise application

integration effort,
b. Heterogeneous access enablement,
c. Flexibility and reusability of software components,
d. Capability for evolutionary and incremental

deployment requiring no changes to current
infrastructures and applications,

e. Extensibility of existing functionality,
f. Relative ease and low cost of adoption,
g. Uniformity in service description, discovery and

access within a network, it is obvious that Web
service is the ubiquitous platform technology for
next-generation computing systems and therefore

cannot avoid the massive deployment ahead of it.
Can Web Service survive this unprecedented
deployment?

This question is particularly interesting considering the
fact that the very technology that holds the greatest
promise will become the Achilles’ heel of future
generation systems, if it cannot survive deployment on a
large scale (Birman et al., 2001). Besides, the Web
bedeviled with similar Web Service limitations as
security, reliability, guaranteed responsiveness, and self-
administration (Birman, 2005a), has not only survived but
has remained a toast of Broadway for about three decades
now because it is scalable (Krummenacher et al., 2005).
Web Service could also survive unprecedented
deployment as the Web, if it is scalable. Unfortunately,
Web Service is inherently poorly scalable (Birman,
2005a; Birman, 2006; Ciganek et al. 2006). It is therefore
not ready for the massive deployment its promises will
attract and hence will become the Achilles’ heel of future
generation systems if its scalability defect is not
addressed.

This paper intends to check this imminent catastrophe by
proposing server-side Software Architecture that will
enable Application Programmers builds scalable Web
Services solution. The imperativeness of such an
architecture has been stressed by Birman, (2005a, 2005b),
and although he believes that it is possible, no such
architecture exists to our knowledge. We are however
aware of architectures that are either client side oriented
or not consumer application transparent or both (Azevedo

*Corresponding author email: godspower.ekuobase@gmail.com

Canadian Journal of Pure and Applied Sciences 1450

et al., 2003; Keidl and Kemper, 2004; Mendonca and
Silva, 2005) and are basically aimed at providing
alternatives for service consumer. We are also aware of
the Abraham’s hub function (Abraham et al., 2005),
aimed at monitoring various alternative services and
allocate request (balance load) appropriately. Although
server side oriented and consumer application transparent,
it cannot be extended to a set of replicated services since
it does not guarantee consistency – a necessary attribute
of replication (Coulouris et al., 2001) which is key to
scalable Web Services solution.

MATERIALS AND METHODS

The basic materials for this research were published
literatures. We surveyed relevant literatures in the domain
of distributed computing; service oriented computing in
particular and was particular about the nature and
scalability of Web Services, diagnoses of the root cause of
the poor scalability of Web Services, properties of the
root cause, opportunities for the root cause in realizing
software architecture for building scalable Web services
solution as well as the intelligibility of the architecture.
First, we exposed the cause of the poor scalability of Web
Services with a view to figure out a key to improving its
scalability. There after, efforts were made to realize an
architecture, that incorporates this key into Web Services
solution at the server side and, that when used by
application programmers could realize scalable Web
Services solution. The architecture was further examined
to appreciate its potentials and flaws.

The architecture was built on the principle of replication,
the third party replication mechanism in particular.
Replication is a technique that helps make exact copies
(replicas) of a given functionality or data simultaneously
accessible and available in possibly different locations
with a view to enhancing overall system performance, and
ensuring service availability and fault tolerance. A
replicated data or computation is expected to be
transparent and consistent (Coulouris et al., 2001).
Conventionally, replication can be passive or active
(Baldoni et al., 2002).

Recently, Baldoni et al. (2002) came with the idea of
separating clients, servers and replication logic of
replication technique resulting in a three-tier approach to
replication as shown in figure 1. They argued that the
conventional (two-tier) replication techniques can not
support the deployment of server replicas implementing a
state full service over an asynchronous distributed system
such as the internet. This argument is consistent with
Birman’s (2005b). Baldoni et al. (2002) went ahead to
show that two necessary and sufficient properties for
replication in state full asynchronous distributed
application services are (i) Client/Server-Asynchrony and
(ii) Client-Autonomy; and established that only the three-

tier replication technique can satisfy these properties. The
feasibility of this technique was also sufficiently
demonstrated in Baldoni et al. (2002).

RESULTS AND DISCUSSION

From the study, it became evident that replication an
unfortunately missing feature of Web service (Birman,
2004, 2005a ; Birman et al., 2004) is key to improving the
scalability of service solutions built on the technology and
can best be incorporated into such solutions by
interposing replication logic as an autonomous in-
direction layer to services; as depicted in figure 2.

The Proposed Web Services Third Party Replication
Logic (WSTPRL) has the following merits:

a. It is in line with, besides being a better alternative to,

the third party philosophy of Krummenacher et al.
(2005).

b. Supports implementation over standard technologies
based on TCP such as Internet Inter ORB Protocol
(IIOP) and SOAP (Baldoni et al., 2002).

c. On-the-fly maintenance (adaptive, corrective or
perfective) of replication logic.

d. Consistent with the loose coupling principle of
service orientation (Erl, 2008).

e. The “fractal” scenario feared by Bussler, (2007) is
adequately accommodated.

Baldoni et al. (2002) says this idea, though unique, is not
strange and has been very successful in applications using
gateways, say. A little wonder why Abraham et al. (2005)
came with the excellent idea of increasing Web Services
availability via central hub or gateway. This Abraham’s
hub function is basically a fraction of typical replication
logic – to monitor various alternative services and allocate
request (balance load) appropriately. However, with the
distributed replication logic, no alternate services but
service replicas and no single point of failure as the hub
exist. Also, with this separation, the third party entity can
be intrinsically equipped with diagnostic and other utility
features.

The proposed WSTPRL as depicted in figure 2, consist
basically of distributed replication logic and sets of
interacting Web Services which may not necessarily be
replicas. With this replication logic in place, a sender
Web Service sends a request to a particular Web Service
but this is intercepted by the WSTPRL (an autonomous
distributed system) which forwards such request to the
appropriate receiver Web Service (replica) according to
its logic. The receiver Web Service (replica) executes
requests computing the results and sends them to the
WSTPRL, which finally returns them to the sender Web
Service; and if a change of state of replica results, it will
simultaneously update sibling replicas. This will greatly

Ekuobase and Onibere 1451

improve scalability of Web Services solutions and is quit
flexible in view of the following promise:

a. A Web Service (respective service replica) may
communicate with the WSTPRL on a point to point
basis following a simple request/response
asynchronous message pattern.

b. Maintains the loose coupling principle of service
orientation: WSTPRL is black box to Web service
(respective atomic service replica) which cannot
exchange message directly among themselves.

c. Enforces services composition since composite
services can only be formed from atomic services.

d. No distributed (agreement) protocol is run at the Web
services end but instead by a specialized autonomous
distributed WSTPRL running appropriate protocol
for accuracy and efficiency of interaction, and
consistency of replica states.

e. No single point of failure: in case of crash of a
WSTPRL entity responsible for a given interaction,
another WSTPRL entity will conclude the process.

f. Support for replication of Web Services – a necessary
requirement for its large scale deployment.

Fig. 1. Three tier Replication Architecture (Baldoni et al., 2002).

Fig. 2. Proposed Web Services Third Party Replication Logic (WSTPRL).

Canadian Journal of Pure and Applied Sciences 1452

g. Continuous and autonomic monitoring, reporting and
advising, detection and/or repair of faulty component,
Web services state and resource by WSTPRL.

h. Provide other utility services; say payment
mechanism for service calls, where needed.

i. The WSTPRL can function also as a proxy server or
front end to the Web service backend, and we know
the beauty of this capability.

j. No extension or reduction of the Web services
standards is required.

k. Ensure high availability and reliability: this is made
possible due to its support for replication and
possible autonomic management of Web service state
and resource.

The WSTPRL later became a key component of the main
architecture this paper is proposing – Replication
Oriented Architecture (ROA) for Web Services solution.
ROA consists of arrays of partitioned atomic services
with each of its element being an array of service replicas.
Each atomic service is assigned a light weight WSTPRL
that manages its service replica and a heavy weight
WSTPRL for a set of atomic services that have the same
back end or legacy system, if any, as shown in figure 3. It
is important to note that the list of atomic services need
not be ordered or resident in the same server but the
location of a Web service must be unique (Weerawarana
et al., 2005). This is guaranteed by the deceptive stance of
WSTPRL as the Web service which actually are service
replicas within the same LAN or network system it
manages.

The ROA architecture is unique particularly in its
application of replication to Web service in the following
respects:

a. It employs a non conventional replication technique.
b. It is server side oriented and transparent to consumer

(applications).
c. Frees Web Services consumers from issues of Web

Services server selection algorithms/policies

This fact is particularly interesting, if we observe that
though we know that some important quality of service
attributes can be provided for internet applications
through the use of replication (Berners-Lee et al., 1996),
efforts so far at taking advantage of this understanding in
the domain of Web Services is not only rare but the few
like Azevedo et al. (2003), Keidl and Kemper (2004), that
dared are either client side oriented or not consumer
(application) transparent or both; and hence the
proliferation of Client-side server selection policies, and
subsequent evaluation of some of these policies for
accessing replicated Web Services by Mendonca and
Silva (2005).

One may argue that the overhead required by WSTPRL
may encumber the scalability of service solutions built on
ROA particularly for services with little or no
computational capability. Besides, the empiricists will
want ROA implemented and have its scalability claim
authenticated particularly with Web services solution that
can expose possible flaws in ROA. This issue of
feasibility and authenticity were addressed but reported
separately.

CONCLUSIONS

Server-side Software Architecture that will enable
Application Programmers build scalable Web Services

Fig. 3. Replication Oriented Architecture for Building Scalable Web Services solution.

Ekuobase and Onibere 1453

solution now exists. With this development, there is
renewed hope that Web Service will survive the
unprecedented deployment its promises will attract.

REFERENCES

Abraham, S., Thomas, M. and Thomas, J. 2005.
Enhancing Web Services Availability. Proceedings of
IEEE International Conference on e-Business
Engineering. IEEE Computer. 352-355.

Azevedo, V., Pires, PF. and Mattoso, M. 2003.
WebTransact-EM: A Model for Dynamic Execution of
Semantically Equivalent Web Services. Brazilian
Symposium on Multimedia Systems and Web. pp 9.

Baldoni, R., Marchetti, C. and Termini, A. 2002. Active
Software Replication through a Three-tier Approach.
Proceedings of the 21st IEEE Symposium on Reliable
Distributed Systems (SRDS). IEEE Computer. pp 10.

Berners-Lee, T., Gettys, J. and Nielsen, HF. 1996.
Replication and Caching Position Statement. available
online at http://www.w3.org/Propagation/Activity.html.

Bichler, M. and Lin, K. 2006. Service-Oriented
Computing. IEEE Computer. 39(3):99-101.

Birman, K. 2005a. Can Web Services Scale Up? IEEE
Computer. 38(10):107-110.

Birman, K. 2006. The Untrustworthy Web Services
Revolution. IEEE Computer. 39(2):98-100.

Birman, KP. 2004. Like it or not, Web Services are
Distributed Objects. Communications of the ACM.
47(12):60-61.

Birman, KP. 2005b. Reliable Distributed Systems:
Technology, Web Services, and Applications. USA:
Springer-Media. pp 668.

Birman, KP., van Renesse, R. and Vogels, W. 2001.
Spinglass: Secure and Scalable Communication Tools for
Mission-Critical Computing. Proceedings of the DARPA
Information Survivability Conference and Exposition. pp
15.

Birman, K., van Renesse, R. and Vogels, W. 2004.
Adding High Availability and Autonomic Behaviour to
Web Services. Proceedings of 26th International
Conference on Software Engineering (ICSE). pp 10.

Bussler, C. 2007. The Fractal Nature of Web Services.
IEEE Computer. 40(3):93-95.

Chung, J., Lin, K. and Mathieu, RG. 2003. Web Services
Computing: Advancing Software Interoperability. IEEE
Computer. 36(10):35-37.

Ciganek, AP., Haines, MN. and Haseman, W. 2006.
Horizontal and Vertical Factors Influencing the Adoption
of Web Services. Proceedings of the 39th International
Conference on System Sciences. pp 10.

Coulouris, G., Dollimore, J. and Kindberg, T. 2001.
Distributed Systems: Concepts and Design. USA. Pearson
education. pp 772.

Erl, T. 2008. SOA: Principles of Service Design. USA:
Prentice Hall. pp 573.

Hogg, K., Chilcott, P., Nolan, M. and Srinivasan, B. 2004.
An Evaluation of Web Services in the Design of B2B
Application. Proceedings of Conferences in Research and
Practice in Information Technology. Australian Computer
Society. 26:331-340.

Keidl, M. and Kemper, A. 2004. A Framework for
Context-Aware Adaptable Web Services. Proceedings of
9th International Conference on Extending Database
Technology. 288-293.

Krummenacher, R., Hepp, M., Pollere, A., Bussler, C. and
Fensel, D. 2005. WWW or What is Wrong with Web
Services. Proceedings of the 3rd European Conference on
Web services (ECOWS’05). IEEE Computer. pp 9.

Mendonca, NC. and Silva, AF. 2005. An Empirical
Evaluation of Client-side Server Selection Policies for
Accessing Replicated Web Services. ACM Symposium
on Applied Computing. 1704-1708.

Vawter, C. and Roman, E. 2001. J2EE vs.
Microsoft.NET: A comparison of building XML-based
web services. USA. Sun Microsystems. pp 28.

Weerawarana, S., Curbera, F., Leymann, F., Storey, T.
and Ferguson, DF. 2005. Web Services Platform
Architecture. USA: Pearson Education. pp 416.

Williams, J. 2003. The Web Services Debate: J2EE vs.
.NET. Communications of the ACM. 46(6):59-63.

Received: Jan 17, 2010; Accepted: Dec 17, 2010

