ON ANTI-INVARIANT MAXIMAL SPACELIKE SUBMANIFOLDS OF AN INDEFINITE COMPLEX SPACE FORM

Augustus Nzomo Wali
Department of Applied Mathematics, Kigali Institute of Science and Technology B P 3900, Kigali, Rwanda

Abstract

The purpose of this paper is to study the geometry of an n-dimensional anti-invariant maximal spacelike submanifold M immersed in a $2(\mathrm{n}+\mathrm{p})$-dimensional indefinite complex space form $\bar{M}(c), c \neq 0$ of holomorphic sectional curvature c and index 2 p and give a pinching result of the Ricci and scalar curvatures of M . We have shown that if the Ricci curvature R is less than $\frac{c}{4}\left((n-1)+\frac{(n+1)(n+2 p)}{(2 n+4 p-1)}\right)$ then M is totally geodesic. Moreover the scalar curvature $\rho \geq \frac{c}{4}\left(n(n-1)+\frac{(n+1)(n+2 p)}{(2 n+4 p-1)}\right)$ and if $\rho \quad$ is less than $\frac{c}{4}\left(n(n-1)+\frac{(n+1)(n+2 p)}{(2 n+4 p-1)}\right)$ them M is totally geodesic.

Keywords: Anti-invariant submanifold, Spacelike submanifold, Complex space form, totally geodesic.

INTRODUCTION

Among all submanifolds of a Kaehler manifold there are two classes; the class of anti-invariant submanifolds and the class of holomorphic submanifolds. A submanifold of a Kaehler manifold is called anti-invariant (resp. holomorphic) if each tangent space of the submanifold is mapped into the normal space (resp. itself) by the almost complex structure of the Kaehler manifold, Chen and Ogiue (1974). A Kaehler manifold of constant holomorphic sectional curvature is called a complex space form, Wali (2005).

Let $\bar{M}(c), c \neq 0$ be an indefinite complex space form of holomorphic sectional curvature c , complex dimension $(\mathrm{n}+\mathrm{p}), \quad p \neq 0$ and index 2 p and let M be an n dimensional anti-invariant maximal spacelike submanifold isometrically immersed in $\bar{M}(c), c \neq 0$. We call M a spacelike submanifold if the induced metric on M from that of the ambient space is positive definite Ishihara (1988).

Let J be the almost complex structure of $\bar{M}(c), c \neq 0$. An n-dimensional Riemannian manifold M isometrically
immersed in $\bar{M}(c), c \neq 0$ is called an anti-invariant submanifold of $\bar{M}(c), c \neq 0$ if each tangent space of M is mapped into the normal space by the almost complex structure J, Yano and Kon (1976).

Let h be the second fundamental form of M in $\bar{M}(c)$ and denote by S the square of the length of the second fundamental form h.

The purpose of this paper is to study an n-dimensional anti-invariant maximal spacelike submanifold M immersed in an indefinite complex space form $\bar{M}(c), c \neq 0$ and give a pinching result of the Ricci and scalar curvatures of M .

Our main result is:
Theorem: Let M be an n-dimensional compact antiinvariant maximal spacelike submanifold of $\bar{M}_{p}^{n+p}(c), c \neq 0$. Then if the Ricci curvature R is less than $\frac{c}{4}\left((n-1)+\frac{(n+1)(n+2 p)}{(2 n+4 p-1)}\right)$ then M is totally geodesic. Moreover, the scalar curvature

[^0]$\rho \geq \frac{c}{4}\left(n(n-1)+\frac{(n+1)(n+2 p)}{(2 n+4 p-1)}\right)$ and if ρ is less than $\frac{c}{4}\left(n(n-1)+\frac{(n+1)(n+2 p)}{(2 n+4 p-1)}\right)$ them $\mathrm{M} \quad$ is totally geodesic.

LOCAL FORMULAS

We choose a local field of orthonormal frames $\left\{e_{1}, \ldots, e_{n} ; e_{n+1}, \ldots, e_{n+p} ; e_{1^{*}}=J e_{1}, \ldots, e_{n^{*}}=J e_{n}\right.$;

$$
\left.e_{(n+1)^{*}}=J e_{n+1}, \ldots, e_{(n+p)^{*}}=J e_{n+p}\right\}
$$

in $\bar{M}_{p}^{n+p}(c)$ such that restricted to M , the vectors $\left\{e_{1}, \ldots, e_{n}\right\}$ are tangent to M and the rest are normal to M. With respect to this frame field of $\bar{M}_{p}^{n+p}(c)$, let $\omega^{1}, \ldots, \omega^{n} ; \omega^{n+1}, \ldots, \omega^{n+p} ; \omega^{1^{*}}, \ldots, \omega^{n^{*}} ; \omega^{(n+1)^{*}}, \ldots, \omega^{(n+p)^{*}}$ be the field of dual frames.

Unless otherwise stated, we shall make use of the following convention on the ranges of indices: $1 \leq A, B, C, D \leq n+p ; \quad 1 \leq i, j, k, l, m \leq n ;$
$n+1 \leq a, b, c \leq n+p ;$ and when a letter appears in any term as a subscript and a superscript, it is understood that this letter is summed over its range. Besides
$\varepsilon_{i}=g\left(e_{i}, e_{i}\right)=g\left(J e_{i}, J e_{i}\right)=1$, when $1 \leq i \leq n$
$\varepsilon_{a}=g\left(e_{a}, e_{a}\right)=g\left(J e_{a}, J e_{a}\right)=-1, \quad$ when
$n+1 \leq a \leq n+p$.
Then the structure equations of $\bar{M}_{p}^{n+p}(c), c \neq 0$ are;

$$
\begin{array}{ll}
d \omega^{A}+\sum_{B} \varepsilon_{B} \omega_{B}^{A} \wedge \omega^{B}=0, & \omega_{B}^{A}+\omega_{A}^{B}=0 \\
\omega_{j}^{i}=\omega_{j^{*}}^{i^{*}}, & \omega_{j}^{i^{*}}=\omega_{i}^{j^{*}} \\
d \omega_{B}^{A}+\sum_{C} \varepsilon_{C} \omega_{C}^{A} \wedge \omega_{B}^{C}=\frac{1}{2} \sum_{C D} \varepsilon_{C} \varepsilon_{D} \bar{R}_{B C D}^{A} \omega^{C} \wedge \omega^{D} \\
\bar{R}_{B C D}^{A}= & \frac{C}{4} \varepsilon_{C} \varepsilon_{D}\left(\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}\right. \\
& \left.+J_{A C} J_{B D}-J_{A D} J_{B C}+2 J_{A B} J_{C D}\right)
\end{array}
$$

where $\bar{R}_{B C D}^{A}$ denote the components of the curvature tensor \bar{R} on $\bar{M}_{p}^{n+p}(c), c \neq 0$.

Restricting these forms to M we have;

$$
\begin{aligned}
& \omega^{a}=0, \omega_{i}^{a}=\sum_{i} h_{i j}^{a} \omega^{i}, h_{i j}^{a}=h_{j i}^{a} \\
& d \omega^{i}=-\sum \omega_{j}^{i} \wedge \omega^{j}
\end{aligned}
$$

$\omega_{j}^{i}+\omega_{i}^{j}=0$,
$d \omega_{j}^{i}=-\sum \omega_{k}^{i} \wedge \omega_{j}^{k}+\frac{1}{2} \sum_{k l} R_{j k l}^{i} \omega^{k} \wedge \omega^{l}$,
$R_{j k l}^{i}=\bar{R}_{j k l}^{i}-\sum_{a}\left(h_{i k}^{a} h_{j l}^{a}-h_{i l}^{a} h_{j k}^{a}\right)$,
$d \omega^{a}=-\sum_{b} \omega_{b}^{a} \wedge \omega_{b}$,
$d \omega_{b}^{a}=-\sum_{c} \omega_{c}^{a} \wedge \omega_{b}^{c}+\frac{1}{2} R_{b i j}^{a} \omega^{i} \wedge \omega^{j}$,
$R_{b i j}^{a}=\sum_{k}\left(h_{i k}^{a} h_{k j}^{b}-h_{k j}^{a} h_{k i}^{b}\right)$
From the condition on the dimensions of M and $\bar{M}_{p}^{n+p}(c)$ it follows that $e_{1^{*}}, \ldots, e_{n^{*}}$ is a frame for $T^{\perp}(M)$. Noticing this, we see that
$R_{j k l}^{i}=\frac{C}{4}\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)-\sum_{a}\left(h_{i k}^{a} h_{j l}^{a}-h_{i l}^{a} h_{j k}^{a}\right)$
We call $H=\frac{1}{n} \sqrt{\sum_{a}\left(\sum_{i} h_{i i}^{a}\right)^{2}}$ the mean curvature of M and $S=\sum_{i j a}\left(h_{i j}^{a}\right)^{2}$ the square of the length of the second fundamental form. If H is identically zero then M is said to be maximal. M is totally geodesic if $\mathrm{h}=0$.

From equation (2.2) we have the Ricci tensor R_{j}^{i} given by

$$
\begin{equation*}
R_{j}^{i}=\sum_{k} R_{k j k}^{i}=\frac{(n-1)}{4} c \delta_{i j}+\sum_{a k} h_{i k}^{a} h_{k j}^{a} \tag{2.3}
\end{equation*}
$$

Thus the Ricci curvature R is
$R=R_{i}^{i}=\frac{c}{4}(n-1)+S$
From equation (2.3) the scalar curvature ρ is given by
$\rho=\sum_{j} R_{j}^{j}=\frac{n(n-1)}{4} c+S$
Let $h_{i j k}^{a}$ denote the covariant derivative of $h_{i j}^{a}$. Then we define $h_{i j k}^{a}$ by
$\sum_{k} h_{i j k}^{a} \omega^{k}=d h_{i j}^{a}+\sum_{k} h_{k j}^{a} \omega_{i}^{k}+\sum_{k} h_{i k}^{a} \omega_{j}^{k}+\sum_{b} h_{i j}^{b} \omega_{b}^{a}$
and $h_{i j k}^{a}=h_{i k j}^{a}$. Taking the exterior derivative of equation
(2.6) we define the second covariant derivative of $h_{i j}^{a}$ by
$\sum_{l} h_{i j k l}^{a} \omega^{l}=d h_{i j k}^{a}+\sum_{l} h_{i j k}^{a} \omega_{i}^{l}+\sum_{l} h_{i j k}^{a} \omega_{j}^{l}+\sum_{l} h_{i j l}^{a} \omega_{k}^{l}+\sum_{b} h_{i j k}^{b} \omega_{b}^{a}$
Using equation (2.7) we obtain the Ricci formula
$h_{i j k l}^{a}-h_{i j l k}^{a}=\sum_{m} h_{m j}^{a} R_{i k l}^{m}+\sum_{m} h_{i m}^{a} R_{j k l}^{m}+\sum_{b} h_{i j}^{b} R_{b k l}^{a}$
The Laplacian $\Delta h_{i j}^{a}$ of the second fundamental form $h_{i j}^{a}$ is defined as $\Delta h_{i j}^{a}=\sum_{k} h_{i j k k}^{a}$.
Thus,

$$
\begin{align*}
& \Delta h_{i j}^{a}=n H_{i j}+\frac{c}{4}(n+1) \sum h_{i j}^{a}-\sum_{b m k} h_{m i}^{a} h_{m k}^{b} h_{k j}^{b}+\sum_{b m k} h_{m i}^{a} h_{m j}^{b} h_{k k}^{b}-\sum_{b m k} h_{k m}^{a} h_{m j}^{b} h_{k k}^{b} \\
& +\sum_{b m k} h_{k m}^{a} h_{m k}^{b} h_{i j}^{b}+\sum_{b m k} h_{k i}^{b} h_{j m}^{a} h_{m k}^{b}-\sum_{b m k} h_{k i}^{b} h_{m k}^{a} h_{m j}^{b} \tag{2.9}
\end{align*}
$$

where $H_{i j}$ is the second covariant derivative of H .
For M maximal in $\bar{M}_{p}^{n+p}(c)$, equation (2.9) becomes,

$$
\begin{align*}
& \Delta h_{i j}^{a}=\frac{C}{4}(n+1) \sum_{i j} h_{i j}^{a}-\sum_{b m k} h_{m i}^{a} h_{m k}^{b} h_{k j}^{b}-\sum_{b m k} h_{k m}^{a} h_{m j}^{b} h_{i k}^{b} \\
& +\sum_{b m k} h_{k m}^{a} h_{m k}^{b} h_{i j}^{b}+\sum_{b m k} h_{k i}^{b} h_{j m}^{a} h_{m k}^{b}-\sum_{b m k} h_{k i}^{b} h_{m k}^{a} h_{m j}^{b} \tag{2.10}
\end{align*}
$$

From $\frac{1}{2} \Delta \sum_{a i j}\left(h_{i j}^{a}\right)^{2}=\sum_{a i j k}\left(h_{i j k}^{a}\right)^{2}+\sum_{a i j} h_{i j}^{a} \Delta h_{i j}^{a}$ we get,
$\frac{1}{2} \Delta \sum_{a i j}\left(h_{i j}^{a}\right)^{2}=\sum_{a i j k}\left(h_{i j k}^{a}\right)^{2}+\frac{c}{4}(n+1) \sum_{a i j}\left(h_{i j}^{a}\right)^{2}-\sum_{a b j j k l} h_{i j}^{a} h_{k l}^{a} h_{l k}^{b} h_{i j}^{b}$
$+\sum_{a b i j k l}\left(h_{l i}^{a} h_{l j}^{b}-h_{l i}^{b} h_{l j}^{a}\right)\left(h_{k i}^{a} h_{k j}^{b}-h_{k i}^{b} h_{k j}^{a}\right)$
For each a let H_{a} denote the symmetric matrix $\left(h_{i j}^{a}\right)$. Then equation (2.11) can be written as
$\frac{1}{2} \Delta \sum_{a i j}\left(h_{i j}^{a}\right)^{2}=\sum_{a i j k}\left(h_{i j k}^{a}\right)^{2}+\frac{c}{4}(n+1) \sum_{a i j}\left(h_{i j}^{a}\right)^{2}-\sum_{a b}\left(t r H_{a} H_{b}\right)^{2}$
$+\sum_{a b} \operatorname{tr}\left(H_{a} H_{b}-H_{b} H_{a}\right)^{2}$
where $\operatorname{tr} H_{a} H_{b}$ denotes the trace of the matrix $H_{a} H_{b}$.
In the sequel, we need the following lemma proved by Chern et al. (1970).

Lemma 2.1: Let A and B be symmetric nxnmatrices. Then,
$-\operatorname{Tr}(A B-B A)^{2} \leq 2 \operatorname{Tr} A^{2} \operatorname{Tr} B^{2}$ and equality holds for non-zero matrices A and B if and only if A and B can be transformed by an orthogonal matrix simultaneously into scalar multiples of \bar{A} and \bar{B} respectively, where

$$
\bar{A}=\left(\begin{array}{cc|c}
0 & 1 & 0 \\
\frac{1}{2} & 0 & - \\
0 & 0
\end{array}\right), \quad \bar{B}=\left(\begin{array}{cc|c}
1 & 0 & 0 \\
0 & -1 & - \\
\hline 0 & 0
\end{array}\right)
$$

Moreover, if A_{1}, A_{2}, A_{3} are three symmetric nxnmatrices such that
$-\operatorname{Tr}\left(A_{a} A_{b}-A_{b} A_{a}\right)^{2}=2 \operatorname{Tr} A_{a}^{2} \operatorname{Tr} A_{b}^{2}, \quad 1 \leq a, b \leq 3$, $a \neq b$, then at least one of the matrices A_{a} must be zero.

Let $S_{a b}=\sum_{a b i j} h_{i j}^{a} h_{i j}^{b}$. Then $(\mathrm{n}+2 \mathrm{p}) \times(\mathrm{n}+2 \mathrm{p})$-matrix $\left(S_{a b}\right)$ is symmetric and can be assumed to be diagonal for a suitable choice of e_{n+1}, \ldots, e_{n+p}. Setting

$$
S_{a}=S_{a a}=t r H_{a}^{2} \quad \text { and } \quad S=\sum_{a} S_{a}, \quad \text { equation }
$$

reduces to

$$
\begin{align*}
& \frac{1}{2} \Delta S=\sum_{a i j k}\left(h_{i j k}^{a}\right)^{2}+\frac{c}{4}(n+1) S-\sum_{a b}\left(\operatorname{tr} H_{a} H_{b}\right)^{2} \\
& +\sum_{a b} \operatorname{tr}\left(H_{a} H_{b}-H_{b} H_{a}\right)^{2} \tag{2.13}
\end{align*}
$$

On the other hand, using Lemma 2.1 we have,

$$
\begin{align*}
& \frac{c}{4}(n+1) S-\sum_{a b}\left(t r H_{a} H_{b}\right)^{2}+\sum_{a b} \operatorname{tr}\left(H_{a} H_{b}-H_{b} H_{a}\right)^{2} \geq \frac{c}{4}(n+1) S-\sum_{a} S_{a}^{2}-2 \sum_{a b} S_{a} S_{b} \\
& =\left(\frac{(1-2 n-4 p)}{n+2 p} S+\frac{c}{4}(n+1)\right) S+\frac{1}{(n+2 p)} \sum_{a>b}\left(S_{a}-S_{b}\right)^{2} \tag{2.14}
\end{align*}
$$

which, together with equation (2.13), implies that

$$
\begin{equation*}
\frac{1}{2} \Delta S \geq \sum_{a i j k}\left(h_{i j k}^{a}\right)^{2}+\left(\frac{(1-2 n-4 p)}{n+2 p} S+\frac{c}{4}(n+1)\right) S \tag{2.15}
\end{equation*}
$$

PROOF OF THE THEOREM

To prove our result we need the following theorem proved by Omori (1967).

Theorem 3.1: Let M be a complete Riemannian manifold with Ricci curvature bounded from below. Let f be a C^{2}-function which is bounded from below on M . Then for all $\varepsilon>0$, there exists a point x in M such that, at $\mathrm{x},\|\operatorname{grad} f\|<\varepsilon, \Delta f>-\varepsilon$ and $f(x)<\inf f+\varepsilon$.

Now from equation (2.4) we see that M satisfies the assumption of the theorem 3.1.
Let $f=\frac{1}{\sqrt{S+d}}$ for any positive constant d . Then f is a
bounded C^{∞}-function on M. Thus

$$
\begin{equation*}
\Delta f=-\frac{1}{2} f^{3} \Delta S+\frac{3}{4}\|\operatorname{grad} S\|^{2} f^{5} \tag{3.1}
\end{equation*}
$$

Let ε be any positive number. Then the above theorem implies that there is a point x in M such that, at x ,
$\frac{f^{6}}{4}\|\operatorname{grad} \mathrm{~S}\|^{2}<\varepsilon, \quad \Delta f>-\varepsilon$ and
$f(x)<\inf f+\varepsilon$
Equations (3.1) and (3.2) give
$\frac{\Delta S}{2(S+d)^{2}}<3 \varepsilon+\varepsilon(\inf f+\varepsilon)$
Equation (2.15) shows that

$$
\frac{1}{2} \Delta S \geq\left(\frac{(1-2 n-4 p)}{n+2 p} S+\frac{c}{4}(n+1)\right) S
$$

Substituting this into equation (3.3), we get
$\frac{S}{(S+d)^{2}}\left(\frac{(1-2 n-4 p)}{n+2 p} S+\frac{c}{4}(n+1)\right)<3 \varepsilon+\varepsilon(\inf f+\varepsilon)$
When $\varepsilon \rightarrow 0, \mathrm{f}(\mathrm{x})$ tends to infimum and S goes to supremum. Hence, we obtain
$\left(\left(\frac{2 n+4 p-1}{n+2 p}\right) S-\frac{c}{4}(n+1)\right) S \geq 0$
Thus either $S=0$ or $\left(\frac{2 n+4 p-1}{n+2 p}\right) S-\frac{c}{4}(n+1) \geq 0$ which gives $S \geq \frac{(n+1)(n+2 p)}{4(2 n+4 p-1)} c$.
If $S<\frac{(n+1)(n+2 p)}{4(2 n+4 p-1)} c$, then substituting this into equation (3.4) we get an impossible case. Thus S must be zero, which in turn implies that M is totally geodesic.
From equation (2.4) and $S<\frac{(n+1)(n+2 p)}{4(2 n+4 p-1)} c$, we see that $R<\frac{c}{4}\left((n-1)+\frac{(n+1)(n+2 p)}{(2 n+4 p-1)}\right)$ which in turn implies that M is totally geodesic.

Similarly, using equation (2.15) we have
$\left(\frac{(2 n+4 p-1)}{n+2 p} S-\frac{c}{4}(n+1)\right) S \geq 0$.
From equation (2.5) and $S \geq \frac{(n+1)(n+2 p)}{4(2 n+4 p-1)} c$ we get $\rho \geq \frac{c}{4}\left(n(n-1)+\frac{(n+1)(n+2 p)}{(2 n+4 p-1)}\right)$.
If $S<\frac{(n+1)(n+2 p)}{4(2 n+4 p-1)} c$ then using equation (2.5) gives
$\rho<\frac{c}{4}\left(n(n-1)+\frac{(n+1)(n+2 p)}{(2 n+4 p-1)}\right)$ which implies that M is totally geodesic.

CONCLUSION

In this paper we studied the geometry of an n-dimensional anti-invariant maximal spacelike submanifold M immersed in an indefinite complex space form $\bar{M}(c), c \neq 0$ and found a pinching result of the Ricci and scalar curvatures of M . In conclusion, we find that if the Ricci curvature R is less than $\frac{c}{4}\left((n-1)+\frac{(n+1)(n+2 p)}{(2 n+4 p-1)}\right)$ then $\quad \mathrm{M} \quad$ is totally geodesic. We also found that the scalar curvature $\rho \geq \frac{c}{4}\left(n(n-1)+\frac{(n+1)(n+2 p)}{(2 n+4 p-1)}\right)$. Moreover, if ρ is less than $\frac{c}{4}\left(n(n-1)+\frac{(n+1)(n+2 p)}{(2 n+4 p-1)}\right)$ then M is totally geodesic.

REFERENCES

Chen, BY. and Ogiue, K. 1974. On tally real submanifolds. Transactions of the American Mathematical Society. 193:257-266.

Chern, SS., do Carmo, M. and Kobayashi. 1970. Minimal submanifolds of a sphere with second fundamental form of constant length. Functional analysis and related fields, Springs, Berlin. 57-75.
Ishihara, T. 1988. Maximal spacelike submanifolds of a Pseudoriemannian space of constant curvature. Michigan Mathematical Journal. 35:345-352.

Omori, H. 1967. Isometric immersions of Riemannian manifolds. Journal of Mathematical Society of Japan. 19:205-214.

Wali, AN. 2005. On bounds of holomorphic sectional curvature. East African Journal of Physical Sciences. 6(1):49-53.

Yano, K. and Kon, M. 1976. Totally real submanifolds of complex space forms II. Kodai Mathematical Seminar Reports. 27:385-399.

[^0]: Author email: tabnzo@yahoo.co.in

