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ABSTRACT 

 
Differential Quadrature (DQ) is a numerical method for evaluating derivatives of a sufficiently smooth function. Of the 
various numerical solutions, differential quadrature (DQ) method has distinguished itself because of its high accuracy, 
straightforward implementation and generality in a variety of problems. In this paper differential quadrature method is 
used to solve buckling problem of column. Critical buckling load is obtained for prismatic and non-prismatic column and 
various boundary conditions are applied. The obtained critical buckling load is compared with exact solution. Equally 
spaced and Chepeshev-Gauss-Lobatto grid points are chosen to show the effect of the grid points on the solution, also the 
effect of the number of grid points on the solution is studied. Direct substitution method is used to implement various 
boundary conditions. A treatment of clamped - free boundary conditions is shown where modified weighting coefficients 
formula is driven.  Also the effect of the non-prismatic constant on the buckling load is studied. 
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INTRODUCTION 
 
The basic idea of Differential Quadrature (DQ) comes 
from Gauss Quadrature, a useful numerical integration 
method. Gauss quadrature is characterized by 
approximating a definite integral with a weighted sum of 
integrand values at a group of so-called Gauss points. 
Extending it to finding the derivatives of various orders of 
a sufficiently smooth function gives rise to DQ (Bellman 
et al., 1972). In other words, the derivatives of a smooth 
function are approximated with weighted sums of the 
function values at a grid points. There are many available 
numerical discretization techniques, such as finite 
difference, finite element and finite volume which using a 
large number of grid points. In some practical 
applications, the numerical solutions of partial differential 
equations are required at only a few specified points in the 
physical domain. 
 
The differential quadrature and its applications were 
rapidly developed after the late 1980. Bert and Malik 
(1996) presented a comprehensive review of the 
chronological development and the applications of the 
DQ method. The DQ method has been efficiently 
employed in a variety of problems in engineering and 
physical sciences up to that year.  
 
Generalized Differential Quadrature Method 
 
The method of DQ is developed based on the assumption 
that the derivatives of function with respect to a space 

variable of a given discrete points can be expressed as 
weighted linear sum of the function values at all discrete 
points in the domain of that variable, then the derivative 
of the function can be written as: 
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Where: 

( )jf x is a function value at a grid point xj. 
( )m
ijC is a weighting coefficient for the derivative of order 

(m). 
 
Once the weighting coefficients are determined, the 
bridge to link the derivatives in the governing differential 
equation and the functional values at the grid points is 
established. 
 
Bellman et al. (1972) proposed two different approaches 
to compute the weighting coefficients ( )m

ijC in above 
equation. The two approaches are based on the use of two 
different test functions. The Bellman’s first approach 
assumes the test function to 
be ( ) , 0,1,...., 1k

kg x x k N= = − . But the second 
approach assumes the test function to be 
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( )NL x is the Legendre polynomial. *Corresponding author email: ahmad_nassef@hotmail.com 
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In order to find simple algebraic expressions for 
weighting coefficients without restricting the choice of 
grid points, the generalized differential quadrature method 
was developed by Shu and Richard (1992). In generalized 
differential quadrature, the test functions are assumed to 
be Lagrange interpolated polynomial as: 
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For first order derivative of equation (1) (i.e. m=1), one 
can substitute from equation (2), (3) into (1) the following 
relationships can be established: 
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Equations (4), (5) are very simple algebraic equations to 
compute (1)

ijC without restriction on choosing sampling 

grid points. However the determination of (1)
iiC requires 

the availability of the second order derivative of 
( )M x which is more difficult to be obtained. 

 
Thus the coefficient (1)

iiC can be obtained as: 
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Similarly the weighting coefficients for the second order 
(i.e. m=2) and higher order derivatives can be calculated. 
But from the definition of the differential operator, we 
have 
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Let [A(m-1)], [A(m)] be the weighting coefficient matrices 
of the (m-1)th and mth order derivatives respectively. 
Then the application of differential quadrature 
approximation to equation (7) results in the following 
recurrence relationship: 

 
( ) (1) ( 1) ( 1) (1)m m mA A A A A− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (8) 

 
To summarize, the equation (8) and the formulations for 
the coefficients of first derivatives (4), (6) constitute 
complete formula for the determination of the weighting 
coefficients from the first to as high as (m-1)th order 
derivatives. 
 
Choosing of grid points 
In this paper, two types of grid points are selected: 
 
Equally spaced grid points 
Often convenient choice for the grid points is that of 
equally spaced points as shown in figure 1. These are 
given in X- direction as: 
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Fig. 1. Equally spaced grid points. 
 
Chebyshev –Gauss-Lobatto grid points 
Shu and Chen (1999) and Nassar et al. (2007) adopt 
Chebyshev- Gauss- Lobatto grid points as the basic mesh 
points to obtain an accurate solution. The coordinates of 
the grid points are chosen as shown in figure 2, where: 
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Fig. 2. Chebyshev –Gauss-Lobatto grid points. 

Formulation of the problem 
The general governing equation of column buckling 
problem, as shown in figure 3 (established by Sepahi et 
al., 2010): 
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Where: 
w is the lateral deflection of the column 
P is axial load 
L is the column length 
E is the modulus of elasticity 
I is the area moment of inertia of the column cross 
section 

 
 

Fig. 3. Buckling of elastic column. 
 
Non-dimensional analysis 
By considering the following non-dimensional terms: 

wW
L

=
 , 
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One can obtain the non-dimensional governing equation: 
2 2 2
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Non-Prismatic column 
For non-prismatic column the governing differential 
equation will be: 

4 3 2 2 2 2

4 3 2 2 2
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This differential equation can be discretized by 
differential quadrature as the following form: 

2 2, , , ,
(4) (3) (2) (2)

2
1, 1 1, 1 1, 1 1, 1

( ) ( )( ) 2
i N j N i N j N i N j N i N j N

ij j ij j ij j ij j
i j i j i j i j

dI X d I X PLI X C W C W C W C W
dX dX E

= = = = = = = =

= = = = = = = =

+ + = −∑ ∑ ∑ ∑  (14) 
If the cross sectional area has the following dimensions: 

( )b x b= is the width of the cross section 
( ) ( 1); 0d x d Xα α= + >  is the depth at any cross 

section
 By introducing the matrix form and Hadamard product 

the above equation will be in the following form: 
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(15) 
Where: 
° denote the Hadamard product. 

2
*

0

PLP
EI

= is a non-dimensional axial load, 0I is the area 

moment of inertia at X=0. 
 

3[( 1) ]Xα + , 2[6 ( 1) ]Xα α +  and 
2[6 ( 1)]Xα α + are N×N matrices whose columns are 

identical and each column consists of the values of the 
terms 3[( 1) ]Xα + , 2[6 ( 1) ]Xα α +  and 

2[6 ( 1)]Xα α + respectively at each discrete point. 
 
From equation (15), the buckling load can be obtained by 
solving the above eigen-value problem together with 
appropriate boundary conditions. 
 
Prismatic column  
For a prismatic column (i.e.α=0) the non-dimensional 
governing differential equation is: 
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This differential equation can be discretized in the 
following form: 
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Where: 

(2) (4),ij ijC C are the weighting coefficients of second and 
forth order. 

 
2

* PLP
EI

= is a non-dimensional axial load. 

 

From equation (17), the buckling load can be obtained by 
solving the above eigen-value problem together with 
appropriate boundary conditions. 
 
Boundary conditions 
In this paper different combination of boundary 
conditions will be considered where: 
 
Simply supported end (SS) 

0W =  and 
2

2 0d W
dX

=
 

Clamped end (C) 

0W =  and 0dW
dX

=
 

Free end (F) 
2

2 0d W
dX

=  and 
3

3 0d W
dX

=
 

Implementation of boundary condition 
The Direct Substitution approach will be used in this 
paper, which was proposed by Shu and Du (1997). 
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X 
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 The essence of this approach is that the Dirichlet 
condition is implemented at the boundary point, while the 
Neumman condition is descritized by the DQ method. 
The descritized derivative conditions at the two ends are 
then combined to give the W2, W(N-1) in terms of 
W3,W4,…..,W(N-2). The dimension of the equation system 
using this approach is (N-4)×(N-4). 
 
For any combination of the clamped and simply supported 
conditions, the discrete boundary conditions using the DQ 
method can be written as: 
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Where (n0), (n1) may be taken as 1 or 2. By choosing the 
values of n0 and n1, one can obtain the following sets of 
boundary conditions: 
 
n0 = 1, n1 = 1  …clamped-----clamped 
n0 = 1, n1 = 2  …clamped-----simply supported 
n0 = 2, n1 = 2  …simply supported ----- simply supported 
 
By substitution in equations (18), (19), one can couple 
these equations together to give W2, W(N-1) as: 

2

2
3

1 1.
N

k
k

W AXK W
AXN

−

=

= ∑
   (20) 

2

1
3

1 .
N

N k
k

W AXKN W
AXN

−

−
=

= ∑
   (21) 

Where: 
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Hence W2, W(N-1) are expressed in terms of 
W3,W4,…..,W(N-2), and can be easily substituted into the 
governing discretized equations (15), (16), to be applied 
at (N-4) grid points, then the weighting coefficients 
matrices can be computed from: 
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Where: 
C1 is a new weighting coefficient for second order 
derivative. 
 
 

Table 1. Non-dimensional buckling load for prismatic column at various boundary conditions.
  

Boundary 
condition 

P* (exact) 

Equally 
spaced 

grid 
points 

P* Error% 

Chebyshev 
Gauss 

Labatto grid 
points 

P* Error% 

C---C 39.4784 
N = 7 
N = 11 
N = 15 

49.0909 
39.5164 
39.4784

24.3487 
0.0962 

0.0

N = 7 
N = 11 
N = 15

42.4337 
39.4802 
39.4784 

7.485 
0.0045 

0.0 

C---SS 20.1421 
N = 7 
N = 11 
N = 15 

19.7783 
20.1865 
20.1907

-1.806 
0.2204 
0.2412

N = 7 
N = 11 
N = 15

20.0720 
20.1901 
20.1907 

-0.348 
0.238 
0.2412 

SS---SS 9.8696 
N = 7 
N = 11 
N = 15 

10.0607 
9.86970 
9.86960

1.936 
0.001 

0.0

N = 7 
N = 11 
N = 15

9.9677 
9.86961 
9.86960 

0.993 
0.0001 

0.0 

C---F 2.4674 
N = 7 
N = 11 
N = 15 

2.4694 
2.467401 
2.467401

0.081 
0.00004 
0.00004

N = 7 
N = 11 
N = 15

2.4680 
2.467401 
2.467401 

0.024 
0.00004 
0.00004 

 



Salah et al.  1403

C2 is a new weighting coefficient for third order 
derivative.

 C3 is a new weighting coefficient for fourth order 
derivative. 
 
But for the case of clamped – free boundary condition, to 
simplify the solution, one can integrate equations (13), 

(16) to obtain third order differential equation and apply 
three boundary conditions, as, two boundaries at clamped 
support and moment condition at free end, then one 
obtain: 
 

( 0) ( 1) ( 0) ( 1)
1, , 1, ,1 . .n n n n

k N N N N kAXK C C C C= −
  (28) 

Table 2. Non-dimensional buckling load for non-prismatic column  at various boundary conditions. 

Boundary condition 
Equally spaced grid 

points 
P* 

Chebyshev Gauss 
Lobatto grid points 

P* 

C---C 
N = 7 
N = 11 
N = 15 

52.3722 
45.5851 
45.5696

N = 7 
N = 11 
N = 15

48.6372 
45.5706 
45.5697

C---SS 
N = 7 
N = 11 
N = 15 

25.7248 
23.3234 
23.3077

N = 7 
N = 11 
N = 15

24.2536 
23.3097 
23.3077

SS---SS 
N = 7 
N = 11 
N = 15 

11.5779 
11.3948 
11.3948

N = 7 
N = 11 
N = 15

11.4939 
11.3948 
11.3948

C---F 
N = 7 
N = 11 
N = 15 

3.0053 
3.0167 
3.0167

N = 7 
N = 11 
N = 15

3.0079 
3.0167 
3.0167
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Fig. 4. Non-dimensional buckling load at different values of non-prismatic constant (α). 
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( 0) ( 1) ( 0) ( 1)
1,2 , 1, ,2. .n n n n

N k k NAXKN C C C C= −
  (29) 

 
( 1) ( 0) ( 0) ( 1)

,2 1, 1,2 ,. .n n n n
N N N NAXN C C C C= −   (30) 

 
Hence W2, W(N) are expressed in terms of 
W3,W4,…..,W(N-2), and can be easily substituted into the 
governing discretized equations to be applied at (N-3) 
grid points, then the weighting coefficient matrices can be 
computed from: 
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,2 ,(2)

1 ,

1 .i i N
i k

C AXK C AXKN
C C

AXN
+

= +  (31) 

(3) (3)
,2 ,(3)

2 ,

1 .i i N
i k

C AXK C AXKN
C C

AXN
+

= +  (32) 

 
RESULTS AND DISCUSSION 
 
For a prismatic column 

 Critical non-dimensional buckling load (p*) is obtained 
for a prismatic column for a different boundary conditions 
as shown in table 1, the effect of the types of grid points 
and number of grid points on the solution is studied for 
each case of boundary condition, also the error between 
the analytic and exact solution is estimated to verify DQ 
method. 

 
 

For a non-prismatic column
 Critical non-dimensional buckling load for non-prismatic 

column at α = 0.1 is obtained, as shown in table 2, at 
different boundary conditions and different grid points 
type and number. 
 
Also the values of a non-dimensional buckling load (p*) 
are obtained at different non-prismatic constant (α), as 
shown in the figure 4. 
 
CONCLUSION 
 
The numerical technique of generalized differential 
quadrature method for the solution of differential 
equations has shown the great potential for being used in 
buckling problem because of its super accuracy, 
efficiency. The main advantage of this method is its 
inherent simplicity and the fact that easily programmable 
algorithmic expressions are obtained. The present method 
is seen to yield excellent results for the cases treated even 

when only a small number of grid points are used for the 
evaluation. Also a simple way of the treatment of 
clamped---free boundary condition is applied. 
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