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ABSTRACT 
 
The research described in this article investigates the utility of Artificial Neural Networks (ANNs) for predicting the 
daily river discharge. The work explores the capabilities of ANNs and compares the performance of Feed Forward 
Neural Network (FFNNS) and Radial Basis Function (RBF) network. Perceived strengths of ANNS are the capability for 
representing complex, non linear relationships as well as being able to model interaction effects. The application of the 
ANN approach is to a portion of Seonath River in Chhattisgarh and forecasting was conducted using daily records. ANN 
technique shows an enhancement of prediction capabilities & reduces the over fitting problem of neural networks. The 
results show that the ANN technique can be used to extract information from the data & to describe the non-linearity of 
river discharge.  
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INTRODUCTION  
 
Many of the activities associated with the planning and 
operation of the components of a water resource system 
require forecast of future events. For the hydrologic 
components, there is a need for both short term and long 
term forecasts of streamflow events, discharge in order to 
optimize the system or to plan for future expansion or 
reduction. Many of these systems are large in spatial 
extent and have a hydrometric data collection network 
that is very sparse. These conditions can result in 
considerable uncertainty in the hydrologic information 
that is available.  
 
Furthermore, the inherently non-linear relationships 
between input and output variables complicate attempts to 
forecast streamflow events. There is thus a need for 
improvement in forecasting techniques. Many of the 
techniques currently used in modelling hydrological time-
series and generating synthetic streamflow assume linear 
relationships amongst the variables. The two main group 
of techniques include physically based conceptual models 
time-series models. Techniques in the first group are 
specifically designed to mathematically simulate the sub-
processes and physical mechanisms that govern the 
hydrological cycle. These models usually incorporate 
simplified forms of physical laws and are generally non-
linear, time-invariant, and deterministic, with parameters 
that are representative of watershed characteristics (Hsu et 
al.,1995) but ignore the spatially distributed, time-
varying, and stochastic properties of the rainfall runoff 
(R-R) process. Kitanidis and Bras (1980a,b) state that 
conceptual watershed model is reliable in forecasting the 

most important features of the hydrograph. However, the 
implementation and calibration of such a model can 
typically present various difficulties (Duan et al., 1992), 
requiring sophisticated mathematical tools (Duan et al., 
1992, 1994; Sorooshian et al.,1993 ), significant amount 
of calibration data (Yapo et al., 1996) and some degree of 
expertise and experience with the models (Hsu et 
al.,1995).The problem with the conceptual models is that 
empirical regularities or periodicities are not always 
evident and can often be masked by noise. 
 
Currently, environmental prediction and modelling 
includes a variety of approaches, such as rainfall-runoff 
modelling or statistical techniques, which entail 
exogenous input together with a number of assumptions. 
Conventional numerical modelling addresses the physical 
problem by solving a highly- coupled, non- linear, partial 
differential equation set which demands huge computing 
cost and time. However, physical processes affecting 
flooding occurrence can be highly complex and uncertain, 
and can be difficult to capture in some form of 
deterministic or statistical model. 
 
In time-series analysis, stochastic or time-series model are 
fitted to one or more of the time-series describing the 
system for purpose which include forecasting, generating 
synthetic sequences for use in simulation studies, and 
investigating and modelling the underlying characteristics 
of the system under study. Most of the time-series 
modelling procedures fall within the framework of 
multivariate autoregressive moving average (ARMA) 
models (Raman and Sunil Kumar, 1995). Traditionally, 
the class of ARMA models has been the statistical method 
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most widely used for modelling water resource time-
series (Maier and Dandy, 1996). In streamflow 
forecasting, time-series models are used to describe the 
stochastic structure of the time sequence of streamflows 
and precipitation values measured over time. Time-series 
models are more practical then conceptual models 
because one is not required to understand the internal 
structure of the physical processes that are taking place in 
the system being modeled. The limitation of univariate 
time-series methods in streamflow forecasting is that the 
only information they incorporate is that which is present 
in past flows. Many of the available techniques are 
deficient in that they do not attempt to represent non-
linear dynamics inherent in the transformation of rainfall 
to runoff. 
 
Therefore a relatively new, improved and efficient soft 
computing technique such as Artificial Neural Networks 
(ANNs) is used in this study to overcome the above-
mentioned problems. The distinguishing feature of the 
ANN based hydrological model is the use of the 
capability of ANNs to approximate virtually any 
continuous function up to an arbitrary degree of accuracy 
which is not otherwise true of other conventional 
hydrological techniques (Hornik et al., 1989). Very often, 
in hydrology, the problems are not clearly understood or 
are too ill-defined for a meaningful analysis using 
physically based methods. Even when such models are 
available, they have to rely on nonlinear rainfall- runoff 
modelling assumptions that make ANNs seem more 
attractive. It provides one alternative to hydrological time-
series modelling. 
 
This study has the following objectives: 
1.  To analyze historical flow data for the River Seonath 

and to test its suitability for streamflow/flood 
forecasting.   

2.  To develop an improved and efficient 
streamflow/flood forecasting model using feed 
forward neural networks (FFNNs) and radial basis 
function neural networks (RBFNNs).  

 
A number of flood/ streamflow forecasting studies have 
been undertaken throughout the world, using various 
techniques. Among these techniques, conventional auto-
regressive integrated moving average (ARIMA) models 
and ANNs have been extensively applied. The following 
paragraphs describe major flood/streamflow forecasting 
studies using these techniques. Bhattacharya and 
Solomatine (2000) have used an ANN to model the stage-
discharge relationship at the Swarupgunj gauging station 
on the Bhagirathi River in India. They concluded that the 
percentage error of the ANN output for all ranges of data 
sets was less compared to that of conventional models 
like auto-regressive integrated moving average (ARIMA) 
techniques. Birkundavyi et al. (2002) have used feed 
forward multi-layer perceptron neural networks as 

predictors  for daily streamflow forecasting up to 7 days 
of lead- time at a Mistassibi River station in Canada. 
Furthermore they noticed that the reliability value does 
not depend upon the ANN structure and the input data. 
Burian et al. (2001) have trained artificial neural networks 
to perform disaggregation of rainfall data from three 
gauging stations in Alabama, USA. The study concluded 
that using 20 or 50 hidden neurons would produce 
accurate results as compared to ANNs with 4 hidden 
neurons. Coulibaly et al. (2001) applied temporal neural 
networks to predict multivariate time-series, specifically 
for hydropower reservoir inflow at the Chute-du-Diable 
watershed, in Canada. It was found that the Elman 
recurrent neural network (RNN) was more efficient than 
any of the other models for short term reservoir inflow 
forecasting. Elshorbagy et al. (2001) explored the 
applicability of chaos theory to find the segments of 
missing data of streamflows. They concluded that ANN 
models were superior to linear regression (LR) models. 
Their results showed that the process of nonlinear noise 
reduction did not help to improve the accuracy of 
estimating the missing data. Hsu et al. (2002) applied a 
hybrid ANN model named a self-organizing linear output 
(SOLO) network with 6 input variables for daily 
streamflow prediction. They concluded that SOLO could 
provide not only a quick and effective solution, but also 
an analysis tool to the modelling system. Islam and 
Kothari (2000) have used ANNs coupled with remote 
sensing of hydrological processes and its data at spatial 
and temporal levels. Self-organization feature maps 
(SOFMs) provide a lower dimensional representation that 
preserves the topological structure of the original and 
higher dimensional data. Liong et al. (2000) applied an 
ANN with feed forward architecture having back 
propagation algorithms as a flow prediction tool, which 
yielded a very high degree of water level prediction 
accuracy at Dhaka Bangladesh up to 7 days leads time. 
Maier and Dandy (1997) stated that auto-regressive-
moving average (ARMA) models have been used 
conventionally for stochastic modelling of time series 
data of water resources. Maier and Dandy (1999) also 
studied that it is important to follow a systematic 
approach in the development of ANN models, taking into 
account factors such as data pre-processing, the 
determination of appropriate model inputs and a selection 
of appropriate topology, parameter estimation and model 
validation. Mani and Desai (2005) developed a 
relationship between stage and discharge using artificial 
neural networks. This model was applied to three gauging 
stations, which are located on the downstream side of 
Godavari River, India. The results showed that the ANN 
models were able to generalize the relationship between 
input and output variables. The Levenberg-Marquardt 
algorithm, which is a standard second-order non-linear 
least squares technique, based on the back-propagation 
process was used to increase the speed of training 
(Masters, 1993). 
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Thandaveswara and Sajikumar (2000) used adaptive 
resonance theory (ART) and multi-layer perceptron for 
pattern clustering to identify the hydrological 
homogeneity of Indian River basin. Thirumalaih and Deo 
(2000) developed a neural network model for specific 
sites in a river basin where adequate meteorological 
information was not available. The sufficiency of the 
impending monsoon rainfall was adequately judged by an 
appropriately trained network, which helped in 
hydrological forecasting. Tokar and Johnson (1999) stated 
that the auto-regressive integrated moving average 
(ARIMA) model does not attempt to represent the non-
linearity inherent in the hydrologic processes, and may 
not always perform well. Tokar and Markus (2000) 
applied artificial neural networks to rainfall-runoff 
modelling of the Fraser River, Colorado, USA along with 
conceptual models. To compare the model results, they 
used statistical indices such as coefficient of 
determination between predicted and observed discharge 
and the ratio between the root mean square error and 
standard deviation of observed discharge. The results 
revealed that ANNs could accurately model nonlinear 
relationships between hydrologic inputs (i.e., rainfall, 
snowmelt equivalent, temperature) and the output–
streamflow. 
 
Study Area 
The Seonath River originates near village Panabaras in 
the Rajnandgaon district. The basin (Fig. 1) is located 
between latitude 200 16’ N to 220 41’ N and longitude 800 

25’ E to 820 35’ E. The basin area of river up to 
confluence with the Mahanadi River is 30,860 Sq Km. 
The river traverses a length of 380 Km. The main 
tributary of Seonath river are Tandula, Kharun, Arpa, 
Hamp, Agar and Maniyari rivers. The mean annual 
rainfall in the basin varies from 1005mm to 1255mm. 

 
 

Fig. 1. Location map of Seonath basin. 

Artificial Neural Network 
A neural network is a computational method inspired by 
studies of the brain and nervous systems in biological 
organisms (Haykin, 1999). Typically neural networks 
consist of a layered processing units and weighted 
interconnections. Neural networks operate on the 
principle of learning from a training set. The typical 
architecture of ANNs is shown in figure 2. The most 
commonly used training algorithm for feed forward 
networks is the back propagation algorithm by Rumelhart 
et al. (1986). Earlier studies are limited primarily to feed 
forward neural networks with logistic activation function, 
as these are mostly used for the prediction and forecasting 
of water resource variables. Radial basis function neural 
network (RBFNN) can be considered as a three-layer 
network in which the hidden layer performs a fixed 
nonlinear transformation with no adjustable parameters. 
The primary difference between the RBF network and 
back-propagation is in the nature of the nonlinearities 
associated with the hidden nodes. The nonlinearity in 
back –propagation algorithm (BP) is implemented by a 
fixed function such as a sigmoid, whereas in radial basis 
function (RBF) method applies its nonlinearities on the 
data in the training set. ANNs offer real merit over 
traditional modelling, including the ability to handle large 
amounts of noisy data from dynamic nonlinear systems, 
especially when the underlying physical relationships are 
not fully understood (Pan and Wang, 2004).  
 
Selection of input and output variable(s) 
For any type of forecasting or estimation problem, it is 
very important to determine appropriate input variables 
which will help us for mapping the non-linear relationship 
between the input and output variables. The goal of an 
ANN is to generalize a relationship of the form. 
 
Ym = f (Xn)   (1) 
where Xn is an n-dimensional input vector consisting of 
variables x1, x2…xi…….xn; and Ym an m-dimensional  
output vector consisting of resulting variables of interest 
y1……… yi……… ym. In hydrology, the values of xi can 
be causal variables such as rainfall, temperature, previous 
flows, spatial locations, evaporation, basin area, slope, 
elevation, meteorological data, and so on. The values of yi 
can be hydrological responses such as runoff, streamflow 
and others. For this present study, the value of X and Y 
are river stage and discharge respectively. An optimal 
dataset should be representative of the probable 
occurrence of an input vector that should facilitate the 
mapping of the underlying nonlinear process.  
 
Data collection and preprocessing 
There is no hard and fast rule for determining the number 
of input-output data combinations that will be required. 
An optimal data set should be representative of the 
probable occurrence of an input vector and should 
facilitate mapping of the underlying nonlinear process. 



River discharge prediction using artificial neural network 1278

Inclusion of less important patterns will reduce the 
network learning speed but an insufficient data set could 
lead to poor learning. This makes it useful to analyze and 
pre-process the data before it is used for the artificial 
neural network application. The following equations are 
used for scaling the input and output data set.  
 
  H  
Data scaled = ------------ + 0.1   (2) 
 1.24Hmax  
  
  Q  
Data scaled = ------------ + 0.1       (3) 

1.24Qmax  
 
Where Q and H are the discharge and the stage at any 
time t and Qmax  and Hmax  are the maximum discharge and 
maximum stage within the period of the ANN simulation. 
The values of Qmax and Hmax   used here are 9106cumecs 
and 249.70m.  
 
RESULTS AND DISCUSSION 
 
The applicability and potential of two different types of 
ANN in daily streamflow forecasting is explored in this 
study. Table 1 (a) and (b) gives the preliminary statistical 
analysis of the daily discharge and the stage. The choice 
of the neural network architecture, the training algorithm 
and the definition of error are usually determined based 
on past experience and preference of the users, rather than 
the physical aspects of the problem. Note that the ANN 

simulated (FFNN) daily discharge values are plotted 
continuously irrespective of missing years up to 726 days 
(i.e., 2 water years) in figure 4 during testing, 3053 (i.e., 8 
water years) in figure 3 during training respectively. In 
India, the water year generally starts on the first day of 
June and ends on the last day of May in every year. The 
applicability and potential of two different types of ANN 
in daily streamflow forecasting is explored in this study. 
Performance of the model outputs is compared in terms of 
correlation coefficient (CC), normalized mean-squared-
error (NMSE). 
 
 In this case study, daily discharge during the monsoon 
period was predicted using the daily stage and the 
previous time-step discharge as inputs. Ten water years of 
daily discharge from June to May (1996-2006) were used 
for developing the models. Since neural networks are 
capable to do well only with interpolation not with 
extrapolation. Because of that two different training and 
testing sets were used. In the first case, eight water years 
of data were used for training and two water years of data 
were used for testing the models. Therefore, the training 
and testing of the daily discharge prediction models were 
performed using a total of 3053 and 726 data sets. The 
daily discharge model was developed with only one 
hidden layer. Initially the experimentation was performed 
by changing the number of hidden layer neurons from 5 to 
20. Beyond that of 20 hidden layer neurons, the 
performance of RBFNN model didn’t improve 
significantly. That’s why we used the number of neurons 
in the hidden layer was kept at a constant of 20. By 

 
 
Fig. 2. Typical ANN architecture with three neuron layer. 
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changing the values of spread in RBFNN from 0.05 to 
1.00 simulation runs were performed to predict the daily 
discharge and thereafter the best RBFNN model was 
selected. The RBFNN simulated daily discharge values 
are plotted continuously irrespective of missing years up 
to 726 days (i.e., 2 water years) in figure 6 during testing, 

3053 (i.e., 8 water years) in figure 5 during training 
respectively The daily hydrographs and the linear 
agreement between the observed and the ANN simulated 
using FFNN and RBFNN streamflows are depicted in 
figures 7 & 8 and figures 9 & 10 respectively. 
 

  
Fig. 3. Comparison of the observed & the FFNN 
estimated daily discharge during training period.                

Fig. 4. Comparison of the observed & the FFNN 
estimated daily discharge during testing period. 

  
Fig. 5. Comparison of the observed & the RBFNN 
simulated daily discharge during training period.  

Fig. 6. Comparison of the observed & the RBFNN 
simulated daily discharge during testing period. 

  
Fig. 7. Scatter plot between observed & the FFNN 
estimated daily discharge during training period. 

Fig. 8. Scatter plot between observed & the FFNN 
estimated daily discharge during testing period. 

  
Fig. 9. Scatter plot between observed & the RBFNN 
simulated daily discharge during training period. 

Fig.10. Scatter plot between observed & the RBFNN 
simulated daily discharge during testing period. 
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CONCLUSIONS 
 
Feed forward neural networks trained with back-
propagation usually start with a large network and 
proceeds by removing weights to which sensitivity of the 
error is minimal. The optimal architectures of ANN for 
the present investigation are 5-30-1 for feed forward 
neural networks and 5-20-1 for radial basis function 
neural networks with different range of spread values. 
This is similar to the idea of calibration that is an integral 
part of most of the time series modelling in the field of 
hydrology. The results show that the radial basis function 
neural networks are found to produce an accurate forecast 
of daily streamflow when compared to feed forward 
neural networks to the particular gauge/discharge station. 
The prediction accuracy of the ANN based model is 
highly dependent on many issues associated with network 
structure identification and network  parameters such as 
interconnected weights, learning rate, momentum 
coefficient, and the number of epochs needed for 
optimization. This study aims to improve the model 
performance by explicitly incorporating hydrological a 
priori knowledge, reducing the network sensitivity to 
input errors and changing the training objective function. 
The results of this case study, demonstrated in the 

Seonath nandghat G/D station at Seonath River Basin 
under experimentation, were encouraging. To improve the 
performance of the ANN models, the incorporation of 
other climatic variables such as rainfall and temperature 
into the input data set and use of recurrent and modular 
neural networks, may be a good focus for the future 
direction of research work. 
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