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ABSTRACT 

 
The transport of vorticity in viscoelastic Walters B′ fluid in the presence of suspended magnetic particles in porous 
medium is considered. Equations governing the transport of vorticity in Walters B′ viscoelastic fluid in the presence of 
suspended magnetic particles in porous medium are obtained from the equations of magnetic fluid flow proposed by 
Wagh and Jawandhia (1996). From these equations, it follows that the transport of solid vorticity Ω

r
 is coupled with the 

transport of fluid vorticity 1Ω
r

 in porous medium. Further, it is found that due to thermo-kinetic process, fluid vorticity 
may exist in the absence of solid vorticity in porous medium, but when fluid vorticity is zero, then solid vorticity is 
necessarily zero. A two-dimensional case is also studied. 
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INTRODUCTION 
 
Magnetic fluids are those fluids in which magnetic 
particles are suspended in a liquid carrier. Thus, it is a 
two-phase system, consisting of solid and liquid phases. 
We shall suppose that the liquid phase is non-magnetic in 
nature and magnetic force acts only on the magnetic 
particles. Thus, the magnetic force changes the velocity of 
the magnetic particles. Consequently, the dragging force 
acting on the carrier liquid is changed and thus the flow of 
carrier liquid is also influenced by the magnetic force. 
Due to the relative velocity between the solid and liquid 
particles, the net effect of the particles suspended in the 
fluid is extra dragging force acting on the system. In 
recent years, there has been considerable interest in the 
study of magnetic fluids. Saffman (1962) proposed the 
equations of the flow of suspension of non-magnetic 
particles. These equations were modified by Wagh (1991) 
to describe the flow of magnetic fluid, by including the 
magnetic body force HM∇0µ . Wagh and Jawandhia 
(1996) have studied the transport of vorticity in a 
magnetic fluid. Transport and sedimentation of suspended 
particles in inertial pressure-driven flow has been 
considered by Yan and Koplik (2009). With the growing 
importance of non-Newtonian fluids in modern 
technology and industries, investigations on such fluids 
are desirable. Widely used theoretical models (models A 
and B, respectively) for certain classes of viscoelastic 
fluids have been proposed by Oldroyd (1958). The 
thermal instability of Maxwellian viscoelastic fluid in the 
presence of a uniform rotation has been considered by 
Bhatia and Steiner (1972), where rotation is found to have 

a destabilizing effect. This is in contrast to the thermal 
instability of a Newtonian fluid where rotation has a 
stabilizing effect. The thermal instability of an Oldroydian 
viscoelastic fluid acted on by a uniform rotation has been 
studied by Sharma (1976). An experimental 
demonstration by Toms and Strawbridge (1953) has 
revealed that a dilute solution of methyl methacrylate in 
n-butyl acetate agrees well with the theoretical model of 
Oldroyd (1958). There are many viscoelastic fluids that 
cannot be characterized by Maxwell’s or Oldroyd’s 
constitutive relations. One such fluid is Walters B′ 
viscoelastic fluid (1960), having relevance and 
importance in geophysical fluid dynamics, chemical 
technology, and petroleum industry. Walters (1962) 
reported that the mixture of polymethyl methacrylate and 
pyridine at 250C containing 30.5g of polymer per litre 
with a density of 0.98g/litre behaves very nearly as the 
Walters B′ viscoelastic fluid. Polymers are used in the 
manufacture of spacecrafts, aeroplanes, tyres, belt 
conveyers, ropes, cushions, seats, foams, plastics 
engineering equipments, contact lens etc. Walters B′ 
viscoelastic fluid forms the basis for the manufacture of 
many such important and useful products. Sharma and 
Kumar (1998) have studied the Rayleigh-Taylor 
instability of two superposed conducting Walters B′ 
elastico-viscous fluids in hydromagnetics. Kumar (2001) 
has studied the effect of rotation on thermal instability in 
Walters B′ elastico-viscous fluid. In another study, Kumar 
et al. (2006) have studied the stability of two superposed 
Walters B′ viscoelastic fluids permeated with suspended 
particles. The medium has been considered to be non-
porous in all the above studies. In recent years, the 
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investigations of flow of fluids through porous media 
have become an important topic due to the recovery of 
crude oil from the pores of reservoir rocks. A great 
number of applications in geophysics may be found in the 
books by Phillips (1991), Ingham and Pop (1998), and 
Nield and Bejan (1999). When the fluid permeates a 
porous material, the gross effect is represented by the 
Darcy’s law. As a result of this macroscopic law, the 
usual viscous term in the equations of fluid motion is 

replaced by the resistance term q
tk
r
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂′−− µµ

1

1
, 

where µ   and µ′  are the viscosity and viscoelasticity of 

the Walters B′ fluid, 1k  is the medium permeability and 
qr  is the Darcian (filter) velocity of the fluid. The 
Rayleigh instability of a thermal boundary layer in flow 
through porous medium has been considered by Wooding 
(1960). Kumar (1998) has studied the stability of two 
superposed Walters B′ viscoelastic fluid-particle mixtures 
in porous medium. Kumar et al. (2006) have studied the 
MHD instability of rotating superposed Walters B′ 
viscoelastic fluids through a porous medium. Kumar and 
Singh (2007) have studied the instability of two rotating 
viscoelastic (Walters B′) superposed fluids with 
suspended particles in porous medium.    
 
Keeping in mind the importance of non-Newtonian fluids 
in modern technology and industries and owing to the 
importance of porous medium in chemical engineering 
and geophysics, the present paper attempts to study the 
transport of vorticity in magnetic Walters B′ viscoelastic 
fluid-particle mixtures in porous medium by using the 
equations proposed by Wagh and Jawandhia (1996). 
 
DISCUSSION 
 
Basic Assumptions and Magnetic Body Force 
Particles of magnetic material are much larger than the 
size of the molecules of carrier liquid. Accordingly 
considering the limit of a microscopic volume element in 
which a fluid can be assumed to be a continuous medium 
and the magnetic particles must be treated as discrete 
entities. Now, if one considers a cell of magnetic fluid 
containing a larger number of magnetic particles then one 
must consider the microrotation of the cell in addition to 
its translations as a point mass. Thus, one has to assign 
average velocity dqr and the average angular velocity ω

r
 

of the cell. But, here as an approximation, we neglect the 
effect of microrotation. We shall also make the following 
assumptions: 
 
(i) Most of the ferrofluids are relatively poor 

conductors and hence free current density J
r

is 

negligible and hence BJ
rr

× is assumed to be 
insignificant. 

(ii) The magnetic field is assumed to be curl free i.e. 
.0=×∇ H

r
 

(iii) In many practical situations liquid compressibility 
is not important. Hence contribution due to 
magnetic friction can be neglected. The remaining 
force of magnetic field is referred as magnetization 
force. 

(iv) All time-dependent magnetization effects in the 
fluid such as hysteresis are assumed to be 
negligible and the magnetization M

r
is assumed to 

be collinear with H
r

. 
 
From electromagnetic theory, the force per unit volume in 
MKS units on a piece of magnetized material of 
magnetization M

r
 (i.e. dipole moment per unit volume) 

in the field of magnetic intensity H
r

 is ( )HM
rr

∇.0µ , 

where 0µ  is the free space permeability. Using 
assumption (iv) 

( ) ( ) ,.. 0
0 HH

H
M

HM
rrrr

∇=∇
µ

µ where MM
r

=  and HH
r

=  . (1) 

But ( ) ( ) ( ) ( )HHHHHHHH
rrrrrrrr

.
2
1.

2
1. ∇=×∇×−∇=∇             

[by assumption (ii)].  (2) 

Hence ( ) ( ) ..
2
1. 0

0
0 HMHH

H
M

HM ∇=∇⎟
⎠
⎞

⎜
⎝
⎛=∇ µ
µ

µ
rrrr

                               

Thus the magnetic body force assumes the form 
(Rosensweig, 1997) 
                           .0 HMfm ∇= µ                 (3) 
 
Derivation of Equations Governing Transport of 
Vorticity in Magnetic Viscoelastic     Walters B′ Fluid 
Wagh (1991) modified the Saffman’s equations for flow 
of suspension to describe the flow of magnetic fluid by 
including the body force HM∇0µ acting on the 
suspended magnetic particles. Now the equations 
expressing the flow of suspended magnetic particles and 
the flow of viscoelastic Walters B′ fluid in which 
magnetic particles are suspended in porous medium are 

( ) ( ),.1
0 ddd

d qqKNHMgmNqq
t

qmN rrrrr
r

−+∇+=⎥⎦
⎤

⎢⎣
⎡ ∇+
∂
∂

ε
µ

εε
   (4) 

( ) ( ),1.1

1

qqKNq
tk

gPqq
t
q

d
rrrrrr

r

−+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂′−−+−∇=⎥⎦

⎤
⎢⎣
⎡ ∇+
∂
∂

ε
µµρ

εε
ρ

                                          (5) 
where ε  is the medium porosity and is defined as 

volumetotal
voidstheofvolume

=ε  , ( ).10 << ε  
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For very fluffy foam materials, ε  is nearly one and in 
bed of packed spheres in the range 0.25-0.50. 
 
In the equations of motion for the fluid, the presence of 
suspended particles adds an extra force term, proportional 
to the velocity difference between suspended particles and 
fluid. Since the force exerted by the fluid on the 
suspended particles is equal and opposite to that exerted 
by the particles on the fluid, there must be an extra force 
term, equal in magnitude but opposite in sign, in the 
equations of motion for the suspended particles. 
 
Making use of the Lagrange’s vector identities 

( ) ( ) ,
2
1.,

2
1. 1

22 Ω×−∇=∇Ω×−∇=∇
rrrrrrrr qqqqqqqq dddd

 (6) 

equations (4) and (5) become 

( ) +∇−−=⎥⎦
⎤

⎢⎣
⎡ Ω×−
∂
∂ 2

22
11

dd
d qmNmNgzq
t

qmN
εεε

rr
r

                      

( ) ,0 dqqKNHM rr
−+∇

ε
µ  (7) 

           

( ) −∇−∇−−∇=⎥⎦
⎤

⎢⎣
⎡ Ω×−
∂
∂ 2

21 2
11 qgzPq

t
q ρ

ε
ρ

εε
ρ rr

r
 

( ) ,'1

1

qqKNq
tk d

rrr
−+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−
ε

µµ   (8) 

where dqr
r

×∇=Ω  and qr
r

×∇=Ω1 are solid vorticity 
and fluid vorticity. 
 
Taking the curl of these equations and keeping that the 
curl of a gradient is identically zero, we have 
 

( ) ( ) ,1
10 Ω−Ω+∇×∇=⎥

⎦

⎤
⎢
⎣

⎡
Ω××∇−

∂
Ω∂ rrrr
v

ε
µ

εε
KNHMq

t
mN

d
  (9) 

( ) ( ) .'11
11

1
1

1 Ω−Ω+Ω⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−−=⎥
⎦

⎤
⎢
⎣

⎡
Ω××∇−

∂
Ω∂ rrrrr
r

ε
µµ

εε
ρ KN

tk
q

t
  (10) 

 
By making use of the vector identities 
 

( ) ( ) ( ) −Ω∇+Ω∇−∇Ω=Ω××∇
rrrrrrrr ... dddd qqqq  

( ) ( ) ,... Ω∇−∇Ω=∇Ω
rrrrrr

ddd qqq  (11) 

( ) ( ) ( )
( ) ( ) )12(,..

....

11

11111

Ω∇−∇Ω=

∇Ω−Ω∇+Ω∇−∇Ω=Ω××∇
rrrr

rrrrrrrrrr

qq

qqqqq

 
equations (9) and (10) become 
 

( ) ( ) ,. 120 Ω−Ω+∇Ω+∇×∇=
Ω rrrr
v

εε
µ

ε
KNqmNHM

Dt
DmN

d
(13) 

( ) ( ) ,.1
111

1

1 Ω−Ω+∇Ω+Ω⎟
⎠
⎞

⎜
⎝
⎛

∂
∂′−−=

Ω rrrrr
r

ρε
ννε KNq

tkDt
D (14) 

where νν ′and are kinematic viscosity and kinematic 

viscoelasticity, respectively and ( )∇+
∂
∂

= .1
dq

tDt
D r

ε
 is the 

convective derivative. 
 
In equation (13), 

( ) ( ) ( ) .HMHMHM ∇×∇+∇×∇=∇×∇     (15) 
 
Since the curl of the gradient is zero, the last term in 
equation (15) is zero. Also since  

( )THMM ,= . 

Therefore,  .T
T
MH

H
MM ∇⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

+∇⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=∇          (16) 

By making use of (16), equation (15) becomes 

( ) HT
T
MHH

H
MHM ∇×∇⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

+∇×∇⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=∇×∇ . (17) 

The first term on the right hand side of this equation is 
clearly zero, hence we get 

( ) HT
T
MHM ∇×∇⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=∇×∇ .       (18) 

Putting this in equation (13), we get 
 

+∇×∇⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
Ω HT

T
M

Dt
DmN

0µε

v
 

( ) ( ) .. 12 Ω−Ω+∇Ω+
rrrr

εε
KNqmN

d  (19) 

Here (14) and (19) are the equations governing the 
transport of vorticity in magnetic viscoelastic Walters 
B′ fluid-particle mixtures in porous medium. 
In equation (19), the first term 

HT
T
M

∇×∇⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

0µ describes the production of vorticity 

due to thermo-kinetic processes. The last term 

( ).1 Ω−Ω
rr

ε
KN

 gives the change in solid vorticity on 

account of exchange of vorticity between the liquid and 
solid in porous medium. 
From equations (14) and (19), it follows that the transport 
of solid vorticity Ω

r
 is coupled with the transport of fluid 

vorticity 1Ω
r

 in porous medium. 

From equation (19), we see that if solid vorticity Ω
r

 is 
zero, then the fluid vorticity 1Ω

r
 is not zero, but it is 

given by 

.0
1 HT

T
M

KN
∇×∇⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

−=Ω
εµr

      (20) 

 
This implies that due to thermo-kinetic process, fluid 
vorticity may exist in the absence of solid vorticity in 
porous medium. Equation (20) also shows that fluid 
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vorticity decreases in the presence of porosity. In the 
absence of porous medium ( )1=ε  

 .0
1 HT

T
M

KN
∇×∇⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

−=Ω
µr

      (21) 

This is in conformity with Wagh and Jawandhia (1996) 
result. 
 
From equation (14), we find that if 1Ω

r
 is zero, then Ω

r
 is 

also zero. This implies that when fluid vorticity is zero, 
then solid vorticity is necessarily zero. 
 
In the absence of suspended magnetic particles, N is zero 
and magnetization M is also zero, so equation (19) is 
identically satisfied and equation (14) reduces to  

( ) ..1
11

1

1 q
tkDt

D rrr
r

∇Ω+Ω⎟
⎠
⎞

⎜
⎝
⎛

∂
∂′−−=

Ω
ε

ννε        (22) 

 
This equation is vorticity transport equation in porous 
medium. The last term on the right hand side of equation 
(22) represents the rate at which 1Ω

r
 varies for a given 

particle, when the vortex lines move with the fluid, the 
strengths of the vortices remaining constant. The first 
term represents the rate of dissipation of vorticity through 
friction (resistance) and rate of change of vorticity due to 
fluid viscoelasticity. 
 
Two-Dimensional Case 
Here we consider the two-dimensional case: 
 
Let ,                                      
 

( ) ( ) ,ˆ,ˆ, jyxqiyxqq
yx ddd +=

r  

( ) ( ) jyxqiyxqq yx
ˆ,ˆ, +=

r   (23) 

where components yxdd qqandqq
yx

,,  are functions 

of tandyx, , then 

kk zz
ˆ,ˆ

11 Ω=ΩΩ=Ω
rr

 .      (24) 
In two-dimensional case, equation (19) becomes 
                                                

.0 +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−
∂
∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
Ω

y
T

x
H

y
H

x
T

T
M

mNDt
D z εµ  

( ) .1 zzm
K

Ω−Ω  (25) 

Similarly, equation (14) becomes 

+Ω
∂
∂′

+Ω−=
Ω

zz
z

tkkDt
D

1
1

1
1

1 νεεν   

( ),1zz
KN

Ω−Ω
ρ

 (26) 

since it can be easily verified that  

( ) ( ) .0.0. 1 =∇Ω=∇Ω qandqd
rrrr

     (27) 
 
The first term on the right hand side of equation (26) is 
the change of fluid vorticity due to internal friction 
(resistance), the second term is the rate of change of fluid 
vorticity due to fluid viscoelasticity and the third term is 
change in fluid vorticity on account of exchange of 
vorticity between solid and liquid. Equation (26) does not 
involve explicitly the term representing change of 
vorticity due to magnetic field gradient and/or 
temperature gradient. But equation (25) shows that solid 
vorticity zΩ  depends on these factors. Hence, it follows 
that fluid vorticity is indirectly influenced by the 
temperature and the magnetic field gradient. 
 
In the absence of magnetic particles, N is zero and 
magnetization M is also zero, so equation (25) is 
identically satisfied and equation (26) reduces to classical 
equation of transport of vorticity for fluid in porous 
medium. If instead of magnetic field we consider a 
suspension of non-magnetic particles, then the 
corresponding equation for the transport of vorticity may 
be obtained by putting M equal to zero in the equations 
governing the transport of vorticity in magnetic fluids. If 
magnetization M of the magnetic particles is independent 
of temperature, then the first term of equations (19) and 
(25) vanish and so the equations governing the transport 
of vorticity in magnetic fluid in porous medium are same 
as those which govern the transport of vorticity in non-
magnetic suspensions in porous medium. 
 
If the temperature gradient T∇  vanishes or if the 
magnetic field gradient H∇ vanishes or if T∇  is 
parallel to H∇ , then also the first term of equations 
(19) and (25) vanish. Thus, we see that in this case also 
the transport of vorticity in magnetic fluid in porous 
medium is same as transport of vorticity in non-
magnetic suspension in porous medium. 
 
REFERENCES 
 
Bhatia, PK. and Steiner, JM. 1972. Convective instability 
in a rotating viscoelastic fluid layer.  Z. Angew. Math. 
Mech. 52:321-324. 

Ingham, DB. and Pop, I. 1998. Transport phenomena in 
porous medium. Pergamon Press. Oxford, UK. 

Kumar, P. 1998. Stability of two superposed viscoelastic 
(Walters B′) elastico-viscous fluids in hydromagnetics. Z. 
Naturforsch., Germany. 54a:343-347. 

Kumar, P. 2001. Effect of Rotation on thermal instability 
in Walters B′ elastico-viscous fluid. Proc. Nat. Acad. Sci. 
A, Phys. Sci. India. 71A:33-41. 



Kumar and Singh 

 

1111

Kumar, P., Mohan, H. and Singh, GJ. 2006. Stability of 
two superposed viscoelastic fluid-particle mixtures. Z. 
Angew. Math. Mech. Germany. 86:72-77. 

Kumar, P., Lal, R. and Singh, GJ. 2006. MHD instability 
of rotating superposed Walters B′ viscoelastic fluids 
through a porous medium. J. Porous Medium. 9(5):463-
468. 

Kumar, P. and Singh, M. 2007. Instability of two rotating 
viscoelastic (Walters B′) superposed fluids with 
suspended particles in porous medium. Thermal 
Science. 11(1):93-102.  

Nield, DA. and Bejan, A. 1999. Convection in porous 
medium (2nd ed.). Springer Verlag, New York, USA. 

Oldroyd, JG. 1958. Non-Newtonian effects in steady 
motion of some motion idealized elastico-viscous liquids. 
Proc. Roy. Soc. London. A245:278-279.  

Phillips, OM. 1991. Flow and reaction in permeable 
rocks, Cambridge University Press, Cambridge, UK.  

Rosensweig, RE. 1997. Ferrohydrodynamics. Dover 
Publications. Inc. Mineola, New York. 

Saffman, P. 1962. On the stability of a laminar flow of a 
dusty gas. J. Fluid Mech. 13:120-128. 

Sharma, RC. 1976. Effect of rotation on thermal 
instability of a viscoelastic fluid. Acta Physica Hung. 
40:11-17. 

Sharma, RC. and Kumar, P. 1998. Rayleigh-Taylor 
instability of two superposed conducting Walters B’ 
elastico-viscous fluids in hydromagnetics. Proc. Nat. 
Acad. Sci. India A, Phys. Sci. 68:151-161. 

Toms, BA. and Strawbridge, DJ. 1953. Elastic and 
viscous properties of dilute solutions of polymethyl 
methacrylate in organic liquids. Trans. Faraday Soc. 
49:1225-1232. 

Wagh, DK. 1991. A Mathematical model of magnetic 
fluid considered as two-phase system. Proc. Int. Symp. on 
Magnetic Fluids, held at REC Kurukshetra, India,  during 
Sept. 21:23-182.  

Wagh, DK. and Jawandhia, A. 1996. Transport of 
vorticity in magnetic fluid. Indian J. Pure Appl. Phys. 
India. 34:338-340. 

Walters, K. 1960. The motion of elastico-viscous liquid 
contained between coaxial cylinders.   J. Mech. Appl. 
Math. 13:444-453. 

Walters, K. 1962. The solution of flow problems in case 
of materials with memory. J.  Mecanique. 1:469-479. 

Wooding, RA. 1960. Rayleigh instability of a thermal 
boundary layer in flow through a porous medium. J. Fluid 
Mech. 9:183-192. 

Yan, Y. and Koplik, J. 2009. Transport and sedimentation 
of suspended particles in inertial pressure-driven flow. 
Phys. Fluids. 21:013301.  

 
Received: Aug 14, 2009; Revised: Jan 4, 2010; Accepted: Jan 8, 2010 


