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ABSTRACT 
 

The general static spherical potential in the form of 
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++φ
is proposed. The first term is the usual Newton’s law. 

The second term refers to the negative field energy of the source which is rather small when comparing with the first term. 

The last term relates to a spring constant   k of the source which acts as a repulsive force against the gravitational one. We 
point out that the spring effect has a limit distance depending on individual sources. Furthermore, the spring force acting 
against the gravitational one can be regarded as the fifth force. The spring theory is also applied in short range interaction. 
 
Keywords: Classical electrostatics, general relativity and gravitational fifth force, short range interaction.  
 
INTRODUCTION 
 
When a source is placed in space, its external field is 
occupied by 2 constituents, namely, the negative energy of 
the source and tentacles (or springs) attaching to the source. 
The latter have a range limit, as they will break when being 
extended to a certain distance. Later in this paper we will 
investigate the properties of these two constituents. We 
start with the Yang’s pure space equations of (Yang, 1974)  
 

νλ µλµν ;; RR =
 .   (1) 

 
We try not to call (1) the vacuum equations. In spite of 
many unphysical conditions, Pavelle (1974, 1975) pointed 
out that there exists a possible solution if the cosmological 
constant Λ≠0 in Einstein’s equations, or 
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In case of spherical static symmetry, the line element is 
written as 
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In case of a non-vacuum exterior solution as we mentioned 
previously, (2) become  
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and 
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which has the same form as Reisner-Nőrdstrom (Adler, 

1975)  where Λ,, BA (Λ  is replaced by a spring term k ) 
are constants to be determined. In fact, the non-zero 
cosmological term is nothing new to the physicists (Kottler 
metric, 1918). However, it cannot be regarded as a 
universal constant but a spring term relating to different 
sources. 
 

The potential is 
2
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where the second term involves the exterior field of the 
source. 
 
The following sections will deduce the values of A  and 
B of (7) classically. 
 
ELECTRIC FIELD 
The electric field energy density surrounding a charge q  is 
proportional to the square of the field intensity E , or 

2EW ∝  .  (8) 
 
Since a charge is always accompanied by its 

electromagnetic mass mδ , 
its mass becomes total rest mass =M  mechanical mass + 
electromagnetic mass 
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 mδ    (9) 
 
The above two masses on the right side of (9) are 
non-separable from each other. The surrounding field of 

this charge possesses a total mass of  - mδ  as shown in 
(13). 

qE (8) can be modified as 

  
2
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in which α  is a constant to be determined. 
 
Upon integration, 

1
2 )1( −+=

r
B

r
AE

 ,  (11) 

where BA , are the constant of integration. 

By setting =A charge q , (8) becomes   
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The total electric field energy over the whole space is  
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We consider the field energy to be negative. Thus, 
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The field intensity becomes 
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Obviously, for ,0,0 →→ Emδ  indicating that mδ  
always accompanies with the charge. The potential can be 
written in the form   
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Bohr’s theory of an orbiting electron seems to allow no 

rooms for the spring term k  as well as for the 

electromagnetic mass mδ  term. If (13) fails, this section 
will be totally meaningless. To investigate the property of 

mδ , we compare Newton’s law with that of Coulomb’s to 
obtain 
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     (18) 
Thus, the 2nd term of (16) is complex and so a charged 
particle as described by (9) refers to a composite particle of 

real and complex parts. The energy-momentum tensor of 
(5) can be written as 

T 
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where ρ  is the mass density and eρ  is the charge density 
same as (10). The above (19) can be a good attempt to 
combine electromagnetic field into general relativity. 
Moreover, we suspect that the second term of (19) may be 
related to the dark matter.   
 
GRAVITATIONAL FIELD  
 
Since Newton’s law is analogous to that of the Coulombs, 
(13) in gravitation can be written as, by changing q into 

G M for unit purpose (Treder, 1975): 
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where  –
2Mc  is the negative energy of the field 

surrounding the source M. Hence , the result gives    

22c
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 .   (21)  
 
It is interesting to know that the sum of the source M and 
its surrounding field  –M is zero, showing that our universe 
is in fact “nothing” when sum up all the real and negative 
matters! Moreover, M and –M do not attract each other to 
avoid a true vacuum formed in the exterior of the source. 
 
The gravitational force acting on a particle m  becomes 
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cr
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r

mMG
=+ 23
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 A spring force kr  needs to be added into (22) eventhough 
we cannot derive it classically. That is: 

  field intensity E  + or - spring term ( rk ) = acceleration 
 
.which is different from the traditional concept of field 
intensity equals acceleration. The plus or minus sign 
depends on whether the object is falling towards or darting 

away from the source. It needs to point out that k  is not a 
universal constant but depending on individual sources. To 

estimate the value of k  for the earth, we take the radius of 

the earth 
6104.6 ×=R m, 679.9=a m/s2 (see 

appendix 1) and mass of the earth 
24106×=M kg. 

Hence, 
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which yields the value of  
k of earth ~ 10-8/s2        (24) 
 
Substitute (24) into (23) and set 0 =a , we obtain r = 107 
m. Once exceeding this critical distance, only the 
Newtonian inverse square law remains effective whereas 
the G2M2 /2r3c2 term is too small to be considered. Since 
the earth-moon distance is 108m but the critical distance 
for the spring is 107m. the spring breaks beyond this range 
and hence, the moon is influenced mainly by the inverse 
square law .  
 
THE FIFTH FORCE 
 
The fifth force has a potential of the form (Fischbach, 1986, 
1992) 
 

)1( λαφ re
r
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 ,  (25) 
in which  

310)6.32.7( −×±−=α   , 50200 ±=λ m . 
 
We find that the distance r  is negative where there is no 
acceleration to any falling object, or a = 0 . This is because 
(25) is only an empirical formula. Moreover, there are still 
experimental difficulties to detect the true nature of this 
additional exponential term. Some papers even criticized 
the existence, that included Thieberger (1987); Cowsik et 
al. (1988); Fitch et al. (1988); Adelberger (1988); Bennet 
(1986); Nelson,Graham and Newman (1990); Stubbs et al. 
(1989); Mannheim (1991) and a more detail one by 
Franklin (1993). In spite of the difficulties in the 
experimental search for the fifth force, the theories do exist 
Kaluza-Klein (1921); Brans-Dicke (1961); Ramanand 
(1988) and Farrad-Rosen (2007). From (23), the so-called 
fifth force or the spring force kr  in our theory is a 
repulsive force which is not only effective on earth but also 
affecting any heavenly object up to the critical distance. 

The Newtonian inverse square term 
2/ rGM  of (23) of a 

planet must be greater than its gravity acceleration in order 

to obtain a positive k . In the case of Jupiter , 
2/ rGM �

79.24 m/s2,  
k for Jupiter = 3.2x 10-9/s2 (26). 

For other planets , 
2/ rGM �a ( =M mass of the planet) , 

which is  difficult for us to calculate the value k of these 
planets (Abell, 1987).  

 
The orbit of a planet  
The usual Binet´s equation is of the form  
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where p  is the central force per unit mass. Since there are 
two additional terms in (23), this Binet’s equation should 
be re-written 
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To solve for the above (27), we follow the same procedures 
as in Adler et al. (1975) [page 206-209]: rewrite (27) as 
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and assume a solution of the form 

)()()()( 2
0 kOkvuu ++= ϕϕϕ   (29) 

To find )(0 ϕu  and )(ϕv . (29) is substituted into (28), 
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Neglecting all terms containing k , we have a simple case 

of Hbuu =+′′ 00     (29b) 
The solution is easily cheeked to be 
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b
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  (30)     
where D  and γ  are arbitrary constants. By an 
appropriate orientation of the axes we may make γ  equal 
to zero, the familiar equation of an ellipse becomes, 

)(0 ϕbkDCos
b
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  (30a) 
Similarly, equating the first-order k  terms in (29a), we 
obtain   
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Substituting (30a) into (31);  
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Now v  can be the sum 21 vvv += , where 1v  and 2v  are 
solutions of the equations           
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whose solutions are 
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and we get 
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Combining this with (30a), the entire solution for the orbit 
to first order in k  appears as  
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Substituting H  and b  of (28a) into (32b) to obtain 
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The perihelion shift is given by 
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The spring constant does not appear in (34) but it affects 
the radial distance. The second term on the right-hand side 
of (27) affects both the perihelion shift as well as the radial 
periodic variations. Unfortunately, the latter is very hard to 

be observed. To estimate the value of the sun’s k , we 
consider the cosine term in (33) be zero and set the 
following table 1 (Roman, 1989): 

 
 

The sun’s k �10- 16 sec-2 to 10-21sec-2.              (35)    
 
Discrepancies appearing in (35) are expected. One reason 
is that the spring loses its elasticity at very large distances. 
Moreover,(33) is not an accurate solution of (27). Taking 

the value 10-21 sec-2 , 0=a ,  the sun’s spring effective 
range can be obtained from (23) ; 
 r = 1013 m                       (36) 
 
The bending of light under the sun’s gravitational field 
 
Let the sun’s location at x�y�0. Light path is traveling 
from .x�+∞ to x�–∞. The closest distance from the sun is 
at x�0, y = ro and r  is the distance between the light and 
the sun. The deflection δ  is the angle between the light 

path and the horizontal line y = 0r
, Light path should be 

described as the motion of an ordinary particle and hence 
the v1 and vo denote different light speeds. The work done 
by a photon can be calculated in this way:  
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We select only the first and third terms of (23),   
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As ,∞→r 0=k , we get the potential 

Table 1. Mass M for sun�2×1030kg, h �2πr2/T 
 
 Mercury Venus Earth Mars Jupiter 

Distance r (10
9

m) 58 108 149 224.9 778.34 

Period T(days) 89 224.7 365.25 686.98 4332.59 

k of sun ( sec- 2) 10- 16 10- 16 10- 16 10- 16 10- 19 

 Saturn Uranus Neptune Pluto  

Distance r (10
9

m) 1427 2869.6 4496.67 5900.2  

Period T(days) 10759.2 30684.9 60190.3 90470  

k of sun ( sec- 2) 10- 21 10- 21 10- 21 10- 20  
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The change of kinetic energy per unit mass is  
2
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To estimate the approximate value of 1v
, we ignore the 

spring term in (37) and compare with Newton’s result of 
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 to obtain, from (38) 
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which seems to be reasonable but we need to point out that 
the speed of light in (38) is not c since there is no vacuum 
due to the second term of (23) [see appendix 2].   With the 
presence of a spring term,         
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The first term is only half the result of general relativity as 
expected but there is an additional term containing the 
spring .The total deflection of the light ray or the angle 
between the asymptotes is  

2

2
0

2
0

22
c
kr

cr
GM

+==∆ δ
        

Using the results of (36), once light is so far away such that 
at r = 1013 m, the spring breaks but light continues to bend 
due to Newton’s effect only.  
 
Spring theory in short range interaction 
The basic assumption of Spring theory is that when a 
source is placed in space, its external field is occupied by 2 
constituents, namely, the negative energy of the source and 
tentacles (or springs) attaching to the source. The latter 
have a range limit, as they will break once being extended 
to a certain distance. The external field of negative energy 
is governed by (20) 
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DISCUSSION 
 
Treder (1975) pointed out that once the mass M is reduced 
to M= (hc/G)1/2 = 10-8  kg, gravitation will be converted 
into a short range strong interaction. In this case, the 
Newton format on the left side of (20) can be converted 
into the quantum format, i.e. convert GM2   into hc. 
 
In the case of short range, integration takes place from zero 
to λ   inside a small domain instead of from zero to ∞. 
 
The right side of (20) can be written as Mc2 = hc/λ. The 
negative sign disappears since interaction takes place 

inside the domain of range λ, but not the external field of 
the source 
 
Axiom: 
“If the mass of each of the two interacting particles is less 
than 10-8 kg, Newton’s inverse square law GMm/r2 should 
be replaced by the quantum gravity format of hc/λ2, where 
M, m  each is less than 10-8 kg and λ is a short range”. 
 
Eq(20) can now be re-written as  
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and upon integration, the constant B = 0.366λ. 
 
As previously mentioned, the acceleration of a falling 
object under the influence of both the field intensity plus 
the spring force of the source is in the form of 
 

=−⎟
⎠
⎞

⎜
⎝
⎛ +

−

kr
r
B

r
GM 1

2 1
 acceleration                        (41) 

 
where k is the spring constant of the source,  for instance, 
the proton. However, in short range, there is no 
acceleration as the interacting particles are confined in a 
small domain. Using the obtained value of B= 0.366λ, the 
above equation can be reduced to 
 

  
2

3 sec
366.1

−=
λ

hcGk
 

 
Since 
 
total energy = potential energy + ( strain energy of the 

spring
2

2
1 Mkr
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with the help of  (41)   
 
total energy  
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              (42) 
 
The above yields the total energy stored inside the domain 
 = 1.3 GeV for a short range of, say, 1.1 fm.  
 
The second term of (42) represents the harmonic 
oscillating energy of a meson which equals mπ c2 . 
Therefore, the energy of the Yukawa π meson is found to 
be 370 MeV using λ = 1.1 fm.      
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Appendix 1 
.Eq(23) can also be modified as (Amots, 2007) 
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The following equation will explain the gravitational 
red-shift: 
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                       (44) 

 
The Jefferson Physical Laboratory at Harvard used a 57Fe 
source being placed at a height of 22.6m above the detector. 
Gamma photons dropped to the detector. The original 
purpose was to demonstrate the Mőssbauer effect (see the 
famous Pound -Rebka experiment).The data were  
     E∆ �the energy gain 3.5×10-11eV 
   r∆ �height dropped 22.6m 
    E �the source energy 14.4keV 
 Hence, 
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Appendix 2 
Using the same experiment as in appendix 1, we 
re-calculate the earth’s gravity based on the condition that 
light speed varies along the gravity distance. In fact, some 
physicists suggested that mass of a photon is non-zero and 
light speed may not be constant everywhere. They 
included Jackson (1987,1999); Goldhaber (1971); Ugarov 
(1979) and Kan (2008). Based on their proposals, like any 
other particles, a falling photon changes its frequency and 
velocity in the form of  
 

hν0  (1�v2/c2)-1/2  = hν,                (45) 
 

and the acceleration 
 

a = v dv/dr                                      (46) 
 
Solving the above two equations, we obtain 
 

a =  (c2/2 r∆ ) [ν0
2 / ν2 – 1]                    (47) 

 
where ν - ν0  =  change of frequency after the drop as given 
in appendix 1. The maximum speed of light is c = 3 x 108 m. 
The rest mass of a photon cannot be zero, indicating ν0    is 
non-zero. Furthermore, no photon can reach its maximum 
speed c. Hence, using the experimental data from appendix 
1 and substitute into(47),we obtain 
 
a = 9.679 m/s2 

 
the same result as in appendix 1. 

 
CONCLUSION 
 
We admit that it is difficult to calculate the exact value of 
the spring term for each source, especially the sun. By 
comparing (24), (26) and (35), we discover that the larger 

the mass, the lesser the value of k .The cosmological 
spring term as abandoned must be extremely small 
(Weinberg, 1987): 10-35 sec-2, or 10-47GeV4, or 10-26 kg/m3 
(Tegmark, 2004). This also explains why the spring inside 
the quark confinement is so strong. We have no intention to 
abandon relativity but to suggest that this cosmological (or 
spring) term needs to be restored.  Eq (19) is an attempt to 
combine electromagnetism into general relativity by 
splitting the energy-momentum tensors of a charged 
particle into a real plus a complex part. The most striking 
result is that the effective range of the earth’s spring is 
107m whereas the earth-moon distance is 108m. A gravity- 
free spherical surface is predicted which allows artificial 
satellites orbiting economically around the earth.  
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