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ABSTRACT

In this paper, a new proof for the Euler equation (exp(ix)=cosx+isinx) has been presented. At first, a new and
general formula has been proved from which the Euler equation has been derived.
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INTRODUCTION

Euler equation in the theory of the complex numbers is
usually proved by expansion of sin(x), cos(x) and exp(x)
into power series. A general proof of this equation based
on direct mathematical analysis does not exist. In this
paper, at first a new formula has been proved from which
the Euler equation has been derived as a special result.

Analysis

Let f be an analytic function with the following
characteristics

f(z)=u(x,y)+iv(x,y), f(z)=
tiz,,z,=a+ib #0,2=x+iy,i=+-1
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Since f is an analytic function [1]
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From Eqgs. 3and 4
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Therefore, g is an analytic function. Let define h as
follows

1 1
h(z) = f(2)+iz, = 4 +io, =U (¢4, 9,)

+iV(¢2,(02),¢2 =u _b’(oz =v+a
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Using Eq. 2

Oy _Ou 00y _ v O0pp _V Opp _OU (5
ox  ox' oy ox' ox  ox oy ox

From Egs. 3 and 5
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Therefore, h is an analytic function. Let define s as
1 1
s(z) = — = -
f(z)-iz, ¢ +ip,

=U(¢3,¢3)+iV(¢3,¢3),¢3=U+b,(03 =v-a

Like the procedure was used for h(z), it can be shown
similarly that s(z) is also an analytic function.
Since f(z) is an analytic function, for any continuous

curve C from z, to z (Kreyszig, 1999).

jf(z)dz:jzZ f(z)dz=F(2)-F(z,) = F(2) + ¢, F'(z) = f(2)
9(2)f'(z)=h(2)s(2) f'(z) = i(S(Z) ~h@@)f'(2)=
i f'(z)dz _1[ ') ') Jd2+co
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The function f(z) can be defined as

~ f@)-iz,
f(z) =z, tan(p(2)/2) = f(z) +iz,
2itan? @)
——cosp()-isinp(z) and —e ="
e""® = cos p(z) +isin p(z) 0

For p(z) = z, the Laurent expansion of e is [z]

e [=cos(z)+isin(z)] :izn_‘::
n=0
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is equation shows that

cos(z)= z((;))' and
H _ (_l) 2n+1
Sm(z)_;(zml)! ’

Therefore, power series expansion of cos(z) and sin(z)
have been obtained without direct expansion of these
functions. In contrary to the traditional procedure of
proving the Euler equation, in this paper, it has been
proved directly and then power series expansion of cos(z)
and sin(z) has been derived from it.
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