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ABSTRACT 

 
 In this paper, a new proof for the Euler equation ( xsinixcos)ixexp( += ) has been presented. At first, a new and 

general formula has been proved from which the Euler equation has been derived. 
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INTRODUCTION 
 
Euler equation in the theory of the complex numbers is 
usually proved by expansion of sin(x), cos(x) and exp(x) 
into power series. A general proof of this equation based 
on direct mathematical analysis does not exist. In this 
paper, at first a new formula has been proved from which 
the Euler equation has been derived as a special result. 
 
Analysis 
 

Let f be an analytic function with the following 
characteristics 
 

 )(),,(),()( zfyxivyxuzf  

1,,0, 00  iiyxzibaziz  

 

(1) 

 
Since f is an analytic function [1] 
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U and V are defined as follows 
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Let define g as 
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Using Eq. 2 
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From Eqs. 3 and 4 
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Therefore, g is an analytic function. Let define h as 
follows 
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Using Eq. 2 
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From Eqs. 3 and 5 
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Therefore, h is an analytic function. Let define s as 
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Like the procedure was used for h(z), it can be shown 
similarly that s(z) is also an analytic function. 
Since f(z) is an analytic function, for any continuous 

curve C from 0z  to z (Kreyszig, 1999). 
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(6) 

 
The function f(z) can be defined as 
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For p(z) = z, the Laurent expansion of ize is [z] 
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This equation shows that 
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Therefore, power series expansion of cos(z) and sin(z) 
have been obtained without direct expansion of these 
functions. In contrary to the traditional procedure of 
proving the Euler equation, in this paper, it has been 
proved directly and then power series expansion of cos(z) 
and sin(z) has been derived from it. 
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