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ABSTRACT 
 
We shall show in this paper a class of computable convex functions, which have their first two solutions specified, and 
for which, all the polynomial solutions are uniquely determined. We shall also prove that the class of functions are 
convex, computable and represents a set of partial functions. Analyses indicate that it is double recursive, which can be 
composed from its primitive recursive functions. The class of convex functions can be shown to be reducible to 
Ackermann’s functions with some modifications to the algorithm, which lend themselves to computability in the form of 
Turing machines and  -calculus, according to Church.  Least search operator or minimisation conditions can be 
imposed on this class of functions, such that, either no solution is returned for a certain term of the function or a term for 
which, the solution is zero.  However, this set of computable convex functions find application in solving optimisation 
problems in operations research, load and demand side management in electrical power systems engineering, switching 
operations in computer science and electronics engineering, mathematical logic and several other application areas in 
industry. 
 
Keywords: computability, optimisation, partial functions, recursive functions, turing machines. 
 
INTRODUCTION 
 
Information theory, electrical load and demand-side 
management, electronics switching techniques, 
optimisation, mathematical logic, nonsmooth mechanics 
(Moreau, 1988) and other application areas in science, 
engineering and industry consists in determining bounds 
on certain performance measures (Moon, 2000). Bounds 
substitute for complicated expressions that are simpler, 
but not exactly equal and are either larger or smaller than 
what they replace.  
 
A function ( )f x  is said to be convex over an interval 

( , )a b  if for every 1 2, ( , )x x a b  and 0 1  , 

1 2 1 2( (1 ) )) ( ) (1 ) ( )f x x f x f x         

 
A function is strictly convex if equality holds only if 

0   or 1   (Moon, 2000; Potter, 2005). One reason 
why we are interested in convex functions is that, it is 
known that over the interval of convexity, there is only 
one minimum. This fact can strengthen many of the 
results we might desire (Moon, 2000).  The importance of 
convexity theory derives from that fact that, convex sets 
occur frequently in many areas of mathematics, science 
and engineering, and are amenable to rather elementary 
reasoning. In addition, the concept of convexity serves to 
unify a wide range of phenomena (Fink and Wood, 1996). 
Geometrically, every convex combination of points on the 
graph of the function is either above or on the graph itself. 

That is, in its epi-graph. This is also equivalent to saying 
that a function is convex iff its epi-graph is a convex set 
(Lebanon, 2006). Thus, we can convert a convex function 
on a convex set A  to a convex function on Rn that is 
equivalent to f  in some sense (Lebanon, 2006). In the 

same vein, a differentiable function f on a convex 

domain is convex iff ( ) ( ) ( ) ( )Tf y f x f x y x   , 

that is, the graph is above the second order Taylor 
approximation plane. A consequence of the foregoing 
result is that for a convex function f , ( ) 0f x   

implies that x  is a global minimum. For the second order 

differentiability condition: If f is twice differentiable on 

a convex domain A , then it is convex iff the Hessian 
matrix ( )H x  is positive semi-definite for all x A .  

 
For a convex function f  and a RV X , 

( ( ) ( )f E X Ef X .   

 
The following operations preserve convexity of functions: 
 
 A weighted combination with positive weights of 

convex functions is convex. If 0iw   and 1,..., nf f  

are convex functions, then i iw f  is convex (with 

a similar result for integration rather than 
summation). This can be seen from the second order 
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condition for convexity. 
 The point-wise maximum or supremum of convex 

functions is convex (this is a consequence of that fact 
that the intersection of convex epi-graphs is a convex 
epi-graph). 

 If f  is convex in ( , )x y and C is a convex set, then 

inf ( , )y C f x y is convex in x  (Beberian, 1994; 

Bhatia, 1997; Birge and Louveaux, 1997; Hiriart-
Urruty and Lemarechal, 1996a; Hiriart-Urruty and 
Lemarechal, 1996b; Lebanon, 2006; Stankova-
Frenkel, 2001).   

 
RECURSIVE FUNCTIONS 
 

Recursive functions form a class of computable functions 
that take their name from the process of recurrence or 
recursion. In general, the numerical form of recursion 
consists in defining the value of a function, using other 
values of the same function (Kasara, 2008). The 
Ackermann Function is a simple recursive function that 
produces large values from very simple inputs (Odifredi, 
2005).  
 
Proposition 1. A class of computable convex functions, 
which have their first two solutions specified is that for 
which, all the polynomial solutions are uniquely 
determined. 
 
Let the first two initial solutions of the polynomial 
function be 1 and a . 
 

We can define the function as ( , )A m n : 
 

0m  , 0n     (0,0) 1A   
0, 1m n        (0,1) 1A   
1, 0m n        (1,0) 1A   
1, 1m n         (1,1)A a  

1, 2m n       2(1, 2)A a  

2, 1m n       2(2,1)A a  

2, 2m n     4(2, 2)A a  

2, 3m n      6(2,3)A a  

3, 2m n      6(3, 2)A a  

3, 3m n     9(3,3)A a  

3, 4m n     12(3, 4)A a  

4, 3m n     12(4,3)A a  

4, 4m n    16(4, 4)A a  

4, 5m n     20(4,5)A a  

5, 4m n    20(5, 4)A a  

5, 5m n    25(5,5)A a  
 

Therefore,  ( , ) ( , ) mnA m n A n m a   

 
We can begin to compute the polynomial and arrange it in 
an array or matrix form as follows: 

                                                                                       n
          0     1        2       3       4       5       6       7       8        9       10                     n   
 0     1     1        1       1       1       1       1        1       1        1        1                      1 

 1     1     a     2a    3a   4a      5a    6a     7a     8a      9a    10a                    na  

 2     1    2a    4a    6a   8a     10a    12a    14a  16a     18a     20a                   2na  

 3     1    3a    6a    9a  12a    15a     18a   21a   24a     27a    30a                    3na  

m  4     1   4a    8a   12a  16a    20a    24a   28a   32a      36a    40a                    4na  

 5     1   5a    10a   15a  20a   25a     30a   35a   40a     45a     50a  -       5na  

 6     1   6a    12a   18a   24a  30a     36a   42a   48a     54a    60a  -       6na      

 7     1   7a    14a   21a   28a   35a     42a  49a   56a     63a    70a     -         -     7na               

 8     1   8a    16a   24a   32a   40a     48a  56a   64a     72a     80a    -         -     8na  

 9     1   9a    18a   27a   36a   45a     54a   63a  72a     81a     90a     -        -     9na  

 10   1   10a   20a   30a    40a  50a     60a   70a   80a     90a    100a    -         -    10na  
 - 
 - 
 - 
 - 

 m    1   ma   2ma 3ma  4ma   5ma   6ma   7ma  8ma    9ma     10ma                    mna  
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Both the first column and the first row can be thought of 
as initialisation for line 0  of the array. It appears that the 
function contains hardly any calculations of actual values, 
but mostly of their indices (Kasara, 2008).  
 
Upon a closer look at the indices, values of each row are 
proportional to the next. Similarly, values of each column 
are also proportional to the next. The upper triangle of 
elements above the diagonal of the matrix is a mirror 
image of the lower triangle of elements just below the 
diagonal. The function can be said to be symmetric. The 
determinant of the matrix above vanishes because two 
rows or two columns are proportional.     
 
The polynomial can be said to be an alternating function 
(Uspensky, 1948). 
 
We can also assume the element a  to be a complex 
quantity in order to be able to evaluate its determinant. 
 
The determinant of the above matrix can be determined if 
it is a square matrix with m n  (that is, n n  matrix). 
The value of the determinant of the above matrix is 
exactly as that of the matrix below:  

The determinant above is equivalent to the modified 
Vandermonde determinant: 
 

1

2 3 1

2 4 6 2( 1)

3 6 9 3( 1)

2 3 ( 1)

1.. .... .... .......

1.. ... ... ........

1.. ... .... .......

1.. .. ... ......

n

n

n

nn

m m m m n

a a a a

a a a a

a a a a
D a

a a a a










  

 
This Vandermonde determinant occurs often in practice 
as monomials of a geometric progression in each row 
(Wikipedia, 2008). 
 
 The simplest way to evaluate the determinant is to 

replace na by a variable a (Uspensky, 1948). 

 

Then, the determinant becomes a polynomial ( )nD a of 

degree 1n   in a . As can be seen, by expanding it by 

a      2a     3a     4a    5a      6a      7a     8a    9a       10a                      na  
2a      4a   6a     8a    10a    12a     14a    16a    18a      20a                     2na  
3a     6a    9a    12a    15a    18a     21a    24a    27a     30a                      3na  
4a     8a   12a    16a    20a    24a     28a    32a    36a     40a                     4na  
5a    10a   15a    20a   25a     30a     35a    40a    45a     50a                     5na  
6a    12a   18a   24a    30a     36a     42a    48a    54a     60a                     6na      
7a    14a   21a   28a    35a      42a    49a    56a    63a     70a                     7na               
8a    16a   24a   32a   40a      48a     56a    64a    72a     80a                     8na  
9a    18a   27a   36a   45a      54a     63a    72a    81a     90a                     9na  
10a   20a   30a   40a   50a      60a     70a    80a    90a    100a                    10na  
ma  2ma   3ma   4ma   5ma    6ma     7ma   8ma    9ma   10ma                    mna  

 
2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20 2

3 6 9 12 15 18 21 24 2

.... ... .. ..... ... .... ... ..... ..... ......................

.. ... ... .... .. .. .. ..... .... .....................

.. ... ... ... .. .. ... ....

n

n

a a a a a a a a a a a

a a a a a a a a a a a

a a a a a a a a a 7 30 3

2 3 4 5 6 7 8 9 10

.... .....................

.. .. .. .. .. .. .. .. .. ....................

n

m m m m m m m m m m mn

a a

a a a a a a a a a a a

D  
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elements of the last row. For 1 2 1, ,..., na a a a  , this 

polynomial vanishes since ( )D a for 1, 2,..., 1n    

appears as determinant with two identical rows. Hence, 

1 2 1( ) ( )( )...( )n nD a C a a a a a a     , where C  is 

the leading coefficient in ( )nD a . This coefficient is the 

minor 
2 2

1 1 1

2 2
2 2 2

1

2 2
1 1 1

1.. .. ....

1... .... ........

1.. ... ......

n

n

n

n
n n n

a a a

a a a

D

a a a








  

  

corresponding to 1n
na  , so we have 

1 1 2 1( ) ( )( )...( )n n n n n n n nD a D D a a a a a a      * 

 

The determinant 1nD   is of the same type as nD  and can 

be treated in the same fashion. 
 
But, 

1
2 2 1

2

1..

1..

a
D a a

a
         

Hence, as follows from (*) for 3n  , 

3 3 1 3 2 2 1( )( )( )D a a a a a a     

 
Further, 
 

4 4 3 4 2 4 1 3 1 3 2 2 1( )( )( )( )( )( )D a a a a a a a a a a a a       , 

etc 
 
The general expression of Vandermonde determinant is 
 

1 2 1( )( )....( )n n n n nD a a a a a a      

         1 1 1 2 1 2( )( )....( )n n n na a a a a a       

        .................................................…….. 

        3 2 2 1( )( )a a a a   

        2 1( )a a . 

 

It is a rational integral function of 1 2, ,..., na a a  that 

mainly changes sign when two of the variables are 
transposed and for this reason, it is called an alternating 
function (Uspensky, 1948). For the exchange of two 

variables like 1a  and 2a  corresponds to the exchange of 

the first and second rows, and this causes the change of 
sign of the Vandermonde determinant. 

For an equation with numerical coefficients, the 
computation of the discriminant can be reduced to the 
computation of a numerical determinant of the same order 

as the degree of the equation. If 1 2, ,... n    be the roots 

of the equation, then the square of Vandermonde 
determinant becomes (Uspensky, 1948; Wong, 1997). 
 

2 1
1 1 1

2 1
2 2 2

1 1 2 1

2 1

1.. .. .......

1.. .. .......

( ).......( )....( )

1.. .. ........

n

n

n n n

n
n n n

  

  
     

  









     

differs from D  only by the factor 2 2
0

na  . Now 

multiplying Vandermonde determinant by itself, column 
by column, and denoting as usual by  

1 2 ...i i i
i ns        

 
The sum of the i th powers of roots, we have 
 

2 1
1 1 1 0 1 1

2 1
1 22 2 2

2 1
1 2 2

1.. .. ...... .. ............

.. .............1.. .. .......

,

... ..........1.. .. ........

n

n

n
n

n
n n nn n n

s s s

s s s

s s s

  

  

  







 

  

So, 

0 1 1

1 2

2 2
0

1 2 2

... ...........

... ...........

.. ...........

n

n

n

n n n

s s s

s s s

D a

s s s





 

  

The sums is  are readily computed from Newton’s 

formulae (Uspensky, 1948; Wong, 1997). 
 
DOUBLE RECURSION 
 
Primitive recursion can be used to define functions of 
many variables, but only by keeping all but one of them 
fixed. Double recursion relaxes this condition. It allows 
the recursion to happen on two variables instead of only 
one (Odifredi, 2005).   
 
 The Archimedes double recursion is reducible to 
primitive recursion.  
 

( ) xn
nh x a  



Asemota 963

But, the Ackermann’s double recursion function is not 
reducible to primitive functions.     

(0, ) 1

( 1,0) ( ,1)

( 1, 1) ( , ( 1, ))

a n n

a m a m

a m n a m a m n

 
 
   

 

 
Ackermann’s function grows very fast. It can be thought 
of as defining a function by three arguments, ( , , )f x y z . 

Thus. ( , , ) ( , )xf x y z f y z  

 
In this function, the argument x determines the function 

in the sequence 1 2, ,...f f  that needs to be used. z  is the 

recursive parameter and y  is idle. By dropping the y  

parameter, we obtain the Ackermann’s function (Odifredi, 
2005). 
 
Minimisation (or Least Search) 
By introducing minimisation or least search operator   

we are able to define a two place-function ( , )f x y by 

another function ( ) [ ( , ) 0]g x y f x y  , where 

( )g x returns the smallest number y , such that 

( , ) 0f x y  , provided that any of the two conditions 

hold: 
 
1. There actually exists at least one z  such that 

( , ) 0f x z  ; and 

2. For every 'y y , the value '( , )f x y  exists and is 

positive. 
 
If at least one of the above two conditions fails, then 

( )g x fails to return a value and is undefined. But, from 

the introduction of the   operator, we encounter a partial 

recursive function that might fail to be defined for some 
arguments (Odifredi, 2005). 
 
Upon application to partial functions, we need to require 

that condition (2) above that '( , )f x y  be defined for 

every 'y y . Therefore,   is thought to try to compute 

in succession all values ( ,0), ( ,1), ( , 2),...f x f x f x  

until some m ( , )f x m , returns 0 . In such a case, an 

m , is returned (Odifredi, 2005). 
 
The two cases where this procedure might fail to give a 
value are: (a) if no such m  exists or if for some of the 

computations ( ,0), ( ,1), ( , 2),...f x f x f x , itself fails to 

return a value. 

We have by this means produced a class of partial 
functions, which can be obtained from their initial 
functions through composition, primitive recursion, and 
least search. 
 
In addition, this class of functions turns out to belong to 
the class of Turing-computable functions and also to the 
class of   definable functions of Alonzo Church 
(Odifredi, 2005; Epstein and Carnielli, 1989).    
 
The  -Operator 

Eliminating the bounds leads to a problem of undefined 
points. Consider ( )f x  the least y  such that 

10y x  . 

 
For each 10x  , ( )f x  is undefined. Yet f  is still 

computable: for (12)f , as an example. We can check 

each y  in turn to see that 12 10y   (Epstein and 

Carnielli, 1989). 
 
We can say that there is no such y which makes 

(12)f defined. We can step outside the system and 

define a better function that is defined everywhere. 
Let us consider the function ( )h w   the least 

, ,x y z  such that , , 0x y z   and w w wx y z   

For, 58w  , we can constructively check in turn each 

triple , ,x y z   to see if    58 58 58x y z  . 

We define the least search operator, also called the 
  operator as: 

[ ( , ) 0]y f x y z  


 iff    { ( , ) 0f x z 


  and  

{for every , ( , )y z f x y


 is defined and 0    (Epstein 

and Carnielli, 1989). 
                  
The min-Operator 

We denote "min [ ( , ) 0]"y f x y 


, the smallest solution 

to the equation ( , ) 0f x y 


, if it exists, and is defined 

otherwise. 
 
However, the min-operator is not the same as the 
  operator. Let us define the primitive recursive 

function 

... ...
( , )

1...........

x y if y x
h x y

Otherwise

 
 


 

 
Now we define 

( ) [2 ( , ) 0]g x y h x y    
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*( ) min [2 ( , ) 0]yg x h x y    

 
Then  

(0), (1)g g  are undefined, (2) 0g   

*(0), *(1)g g  are undefined, *(2) 0g   

 
But we now define 

( )f x µy[g(y).(x+1) = 0]  

f*(x) = miny [g*(y).(x + 1) = 0]  
 
Then ( )f x  is undefined for all x . But, for all x ,  

*( ) 2f x   (Epstein and Carnielli, 1989; Robinson, 

1947). 
 
The  Operator is a Computable Operation 

We choose the   operator rather than the min-operator, 

because we may not be able to predict for which x , 

( , ) 0f x y  , has a solution.      

But with the   operator, if ( ,0)f x  is undefined, then 

[ ( , ) 0]y f x y   is undefined too. This is so because 

we may not be able to get at trying ( ,1) 0f x   (Epstein 

and Carnielli, 1989). There is, however, a well-defined 
computable procedure for calculating ( )g x , although it 

may not always give a result (Odifredi, 2005; Epstein and 
Carnielli, 1989; Robinson, 1947). 
 
Partial Recursive Functions 
Partial recursive functions are the smallest class 
containing the zero, successor, and projection functions 
and closed under composition, primitive recursion and the 
  operator. 

 
We call functions, which may (for all we know) be 
undefined for some inputs partial functions and may be 
denoted by the letters , , ,   etc. We may write 

( )x   for “  applied to x  is defined” 

( )x   for “  applied to x  is not defined”. 

We say that a set A  or relation R  is recursive if its 
characteristic function is recursive. 
When we use the   operator, we need to reverse the 

roles of 0  and 1 in the characteristic function. So, we 
define the representing function for a relation R  to be 

Rsg C  (Odifredi, 2005; Epstein and Carnielli, 1989; 

Robinson, 1947). 
 2. It is not as restrictive as it may appear that the 
  operator requires us to search for a y  such that 

( , ) 0x y 


. Given a relation R , we write 

( )
[ ( , )]

g x
y R x y





 

to mean [ ( ) ^ ( , )]y y g x R x y 
 

 (Epstein and 

Carnielli, 1989).    
 
One can, therefore, prove with rigour that a function is 
convex from any of the following criteria instead of 
guessing it from the graph. 
 
1. Let ( )f x  be a continuous function on an interval 

I . Then ( )f x  is convex if and only if 

( ( ) ( )) / 2 (( ) / 2)f a f b f a b    holds for all 

,a b I . Also, ( )f x  is strictly convex if and only 

if ( ( ) ( )) / 2 (( ) / 2)f a f b f a b   , whenever 

,a b I  and a b . 

2. Let ( )f x  be a differentiable function on an interval 

I . Then ( )f x  is convex if and only if '( )f x  is 

increasing on I . Also, ( )f x  is strictly convex if 

and only if '( )f x  is strictly increasing on the 

interior of I . 
3. Let ( )f x  be a twice differentiable function on an 

interval I . Then, ( )f x  is convex if and only if 

''( ) 0f x   for all x I . Also, ( )f x  is strictly 

convex if and only if ''( ) 0f x   for all x  in the 

interior of I  (Stankova-Frenkel, 2001). 
 
Concluding Remarks 
We have shown that for the class of functions considered 
in this study that it is both convex and computable. It has 
also been shown that over the interval of convexity there 
is only one minimum. This fact strengthens our claim of 
having the best solution to the application areas of interest 
in science, technology and industry. Also, a sum of 
convex functions is convex. Adding a constant or linear 
function to a convex function does not affect convexity. 
In addition, a convex function is never above its linear 
interpolation.   
 
Convex functions represent a class of nonsmooth 
optimisation algorithms and techniques useful for getting 
results of very high quality in most application areas. 
 
 The importance of convexity theory derives from that 
fact that convex sets arise frequently in many application 
areas and often amenable to rather elementary reasoning. 
Also, the concept of convexity serves to unify a wide 
range of physical phenomena. 
 
In the financial system, for example, several factors like: 
(i) equilibrium term structure, (ii) path dependence, and 
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(iii) convexity, combine to make financial engineering a 
rigorous discipline that comprise statistics, mathematics, 
economics and computer science (Kling, 2007). 
Convexity in the financial system is the curvature that 
relates value to a random variable, which will determine 
how the mean and the variance (volatility) of the random 
variable affect value. In addition, the matrix elements 
of A  and its inverse differ only in the sign in the powers 
of  . It is possible to use a single computer programme 
to carry out both types of transformation. This is the same 
as carrying out a transformation of expressing the value of 
the coefficients in terms of the input quantities (Wong, 
1997).    
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