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ABSTRACT 

 
Recently we gave two combinatorial interpretations of - a fifth order mock theta function by using (n+2) - color 
partitions and lattice paths. In this paper we give one more combinatorial meaning to the same mock theta function by 
using generalized Frobenius partitions. This results in a three - way combinatorial identity. 
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INTRODUCTION  
DEFINITIONS AND THE MAIN RESULTS 
In his last letter dated 12 January, 1920 to Hardy, 
Ramanujan listed 17 functions which he called mock theta 
functions. He separated these 17 functions into three 
classes. First containing 4 functions of order 3, second 
containing 10 functions of order 5 and the third 
containing 3 functions of order 7. 
 
Watson (1936) found three more functions of order 3 and 
two more of order 5 appear in the lost notebook (see 
Ramanujan, 1988). Mock theta functions of order 6 and 8 
have also been studied by Andrews and Hickerson (1991) 
and Gordon and McIntosh (2000), respectively. For the 
definitions of mock theta functions and their order the 
reader is referred to Hardy et al. (1927). 
 
A partition of a positive integer n is a non-increasing 
sequence of positive integers whose sum is n. 0 also has a 
partition called "empty partition". The rank of a partition 
is defined to be the largest part minus the number of its 
parts. Partition theoretic interpretations of some of the 
mock theta functions are found in the literature. For 
example, , defined by (1.2) below, has been 
interpreted as generating function for partitions into odd 
parts without gaps (Fine, 1988). A survey of work done 
on mock theta functions is given in Andrews (1989). 
Recently Bringmann and Ono (2006) redefined mock 
theta functions as the holomorphic projection of weight 
1/2 weak maass forms and used their ideas in solving the 
classical problem of obtaining formulas for  (resp. 

, the number of partitions of  with even (resp. 
odd) rank by showing the equivalence of this problem and 
the problem of deriving exact formulas for the 
coefficients  of the series 

 

  
 
where  is the first mock theta function of order 3 in 
Ramanujan's  list of 17 mock theta functions and  

 

for any constant a. 
The following four mock theta functions  

 

 

 
and  

 
where  is of order 3 while the remaining three are of 
order 5, were interpreted combinatorially by Agarwal 
(2004), using -color partitions.  Later in 2005, he 
translated his results for lattice paths. For clarity we 
reproduce the results of Agarwal (2004, 2005). But first 
we recall the following definitions. 
 
Definition 1.1 (Agarwal and Andrews, 1987) A 
partition with "  copies of ,"  is a partition in 
which a part of size , , can come in  
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different colors denoted by subscripts:  
 
Thus, for example, the partitions of 2 with "  copies 
of " are 

 
 
Note that zeros are permitted if and only if  is greater 
than or equal to one. Also, in no partition are zeros 
permitted to  repeat. 
 
Definition 1.2 (Agarwal and Andrews, 1987) The 
weighted difference of two parts  is 
defined by  and denoted by . 
Next we describe the lattice paths which we shall be 
considering in this paper (Agarwal and Bressoud, 1989). 
All paths will be of finite length lying in the first quadrant 
. They will begin on the y-axis and terminate on the x-
axis. Only three moves are allowed at each step: 
northeast: from  to  
southeast: from  to , only allowed if 

 
horizontal: from  to  , only allowed along 
x-axis 
 
All our lattice paths are either empty or terminate with a 
southeast step: from  to . 
 
The following terminology will be used in describing 
lattice paths: 
 
Peak: Either a vertex on the y-axis which is followed by a 
southeast step or a vertex preceded by a northeast step and 
followed by a southeast step. 
 
Valley: A vertex preceded by a southeast step and 
followed by a northeast step. Note that a southeast step 
followed by a horizontal step followed by a northeast step 
does not constitute a valley. 
 
Mountain: A section of the path which starts on either 
the x-axis or y-axis, which ends on the x-axis, and which 
does not touch the x-axis anywhere in between the end 
points. Every mountain has at least one peak and may 
have more than one. 
 
Plain: A section of the path consisting of only horizontal 
steps which starts either on the y-axis or at a vertex 
preceded by a southeast step and ends at a vertex followed 
by a northeast step. 
 
The Height of a vertex is its y-coordinate. The Weight of 
a vertex is its x-coordinate. The Weight of a path is the 
sum of the weights of its peaks. 

 
Example: The following path has 5 peaks, 3 valleys, 3 
mountains and 1 plain. 

 
 
Definition 1.3 (Andrews, 1984) A two rowed array of 
non-negative integers 

  

 
is known as a generalized Frobenius partition or more 
simply an F-partition of  if 

 
 
For example, =28=4+(6+5+2+0)+(5+3+2+1) and the 
corresponding Frobenius notation is  

It was proved by Agarwal (2004) that the mock theta 
functions (1.2) - (1.5) have their combinatorial 
interpretations in the following theorems, respectively: 
 
Theorem 1.1. For  let  denote the number of 

-color partitions of  such that even parts appear with 
even subscripts and odd with odd. For some  is a 
part, and the weighted difference of any two consecutive 
parts is 0. Then 

 
Theorem 1.2. For  denote the number 
of -color partitions of  such that even parts appear with 
even subscripts and odd with odd greater than 1, for some 

 is a part, and the weighted difference of any two 
consecutive parts is 0. Then 

 

 
Theorem 1.3. For  denote the number 
of -color partitions of  such that only the first copy of 
the odd parts and the second copy of the even parts are 
used, that is, the parts are of the type  or , 
the minimum part is  or  and the weighted difference  
of any two consecutive part is 0. Then 

 

Theorem 1.4. For  denote the number 
of -color partitions of  such that only the first copy of 
the odd parts and the second copy of the even parts are 
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used, the minimum part is  and the weighted difference 
of any two consecutive part is 0. Then 

 

Later Agarwal (2005) translated Theorems (1.1) - (1.4) 
for lattice paths as follows: 
 
Theorem 1.5. For  denote the number 
of lattice paths of weight  which start from (0,0), have 
no valley above height 0 and no plain. Then  

 

 
Theorem 1.6. For  denote the number 
of lattice paths of weight  which start from (0,0), have 
no valley above height 0, no plain and the height of each 
peak is . Then 

 

 
Theorem 1.7. For  denote the number 
of lattice paths of weight  which start from (0,0), have 
no valley above height 0, no plain, the height of each peak 
of odd weight is 1 while that of even weight is 2. Then 

 

 
Theorem 1.8. For  denote the number 
of lattice paths of weight  which start from (0,0), have 
no valley above height 0, no plain, the height of each peak 
of odd weight is 1 while that of even weight is 2 and the 
weight of the first peak is 1. Then 

 

Very recently, we gave two combinatorial interpretations 
of  - a fifth order mock theta function, defined by 

 
 in the following form: 
 
Theorem 1.9. For  denote the number 
of partitions of  copies of " in which 
even parts appear with even subscripts and odd with odd 
greater than 1. For some  is a part and the weighted 
difference of any two consecutive parts is zero. Let  
denote the number of lattice paths of weight  which start 
at (0,2), have no valley above height 0, no plain, and for 
which the height of each peak is  Then 

 
Theorem 1.9 yields the following combinatorial identity 
 

 
Note. Theorem 1.9 will appear in the Centenary Volume 
of the Journal of the Indian Mathematical Society, 2007. 
Here we propose to prove the following theorem which 
extends Theorem 1.9: 
 
Theorem 1.10. For  denote the number 
of F-partitions of  such that 

, 
, and 

. 
 
Let  denote the number of  - color partitions 
of  such that   
(1.d) even parts appear with even subscripts and odd with 
odd greater than 1, 
(1.e) the weighted difference of any two consecutive parts 
is 0, and 
 (1.f) for some  is a part. 
Then 

 
Note.  of Theorem 1.10 is the same as in Theorem 
1.9. 
 
We give the detail proof of Theorem 1.10 in our next 
section and conclude in the last section by posing an open 
problem. 
 
Proof of the Theorem 1.10  
We establish a 1-1 correspondence between the F-
partitions enumerated by  and the  - color 
partitions enumerated by . We do this by mapping 
each column  of the F-partition to a single part  

of an - color partition enumerated by . The 
mapping  is 

 
and the inverse mapping  is given by 

 
Now suppose we have any two adjacent columns  

and   in an F- partition enumerated by  with 

 

Then since 

 
We have  
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Clearly (2.3) and (1.c) imply (1.e). 
Also (2.1), (1.a) and (1.b) imply (1.d) as (a+b+1) and (b-
a+3) are of same parity. 
Now if  then   which is of 

the form ,  and if ,  
then  . In this case we consider a 

"phantom" column , as the last column. Since 

, we see that (1.f) holds and the parts 

 satisfy (1.e). It is worthwhile to 
mention here that the "phantom" column is dropped from 
the full Frobenius symbol. 
 
To see the reverse implication, we consider the inverse 
images of two consecutive parts   of an  - 
color partition enumerated by  

 

and 
 

that is, 

 

 

 

 
and so 

 
 

 
 (2.10) and (1.e) imply (1.c). 
(2.8) and (2.9) imply (1.b). 
(1.f) implies that there is a column of the form . 

Such a column has to be the last in the F - partition and 
 must be the smallest part of its partition, since if  

 then  
 

Also  is allowed to be a part in an - color 
partition enumerated by .  corresponds to a 
"phantom" column , which is dropped from the 

corresponding F- partition. This in view of (1.e) implies 
. Otherwise, if  is the last part in 

- color partition then using (2.2) we see that it 
corresponds to a column  which implies . 

This completes the proof of the Theorem 1.10. 
 
To illustrate the bijection we have constructed we close 
this section with the example for =7 shown in the 
following Table 1 
 
 F-partitions enumerated by A(7)  Image under  

      

      

      

 
Furthermore, we see that C (7) is also equal to 3, which 
has to be so by (1.16). The relevant lattice paths are: 

 

 

 
 
CONCLUSION 
 
Theorems (1.9) and (1.10) lead to the following 3 - way 
combinatorial identity  

 
 
Obviously, (3.1) induces three combinatorial identities. 
While the identity  is (1.16) given above, 
the other two viz.,  and  are 
new. Agarwal (2004, 2005) gave combinatorial 
interpretations of four mock theta functions defined by 
(1.2)-(1.5) above by using colored partitions and lattice 
paths. Recently, Agarwal and Narang have given 
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combinatorial interpretations of the same mock theta 
functions by using F - partitions. Their results have been 
accepted for publications in ARS Combinatoria. Very 
recently Agarwal and Rana succeeded in interpreting one 
more mock theta function of order five defined by (1.14) 
above combinatorially by using -color partitions 
and lattice paths. Their results will appear in the 
Centenary Volume of the Journal of the Indian 
Mathematical Society, 2007. In this paper we have 
interpreted this mock theta function combinatorially, in 
terms of F - partitions. It would be of interest to interpret 
the other mock theta functions also by using the methods 
of these papers. 
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