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ABSTRACT 
 
An empirical model of raindrop size distribution has been formulated in this paper through which the relationship 
between integral parameters with the rainfall rate is deduced through a general form of gamma distribution function. It 
suitably connects the radar reflectivity factor, attenuation and other integral parameters with the rainfall rate. The 
variation of parameters in the distribution function has been worked out empirically. Numerical analyses of the 
fluctuations of integral parameters and distribution parameters have been carried out which are compared with some 
earlier works. 
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INTRODUCTION 
 
Radar reflectivity factor and rainfall rate relation plays an 
important role in weather radar measurements, which 
specially depends on drop concentration and mean drop 
size, i.e., the type of rainfall. Earlier investigators in this 
field used different formulations for raindrop size 
distribution with various parameters along with different 
local characteristics to fit the observed spectra. 
Introducing two-parameter exponential distribution 
function, Marshall and Palmer (1948) deduced the 
connectivity between the reciprocal of the mean diameter 
and the rainfall rate. But, the instant shape of the raindrop 
size distribution what they obtained, usually differed from 
the predicted exponential form. Later, three-parameter 
gamma distribution function had been introduced by 
Ulbrich and Atlas (1975) to relate the rainfall rate with 
other integral parameters. Their investigations show 
higher rainfall rates above the actual value obtained by X-
band radar. Considering radar reflectivity factor (Z) and 
optical extinction (∑) as dual parameters, Atlas and 
Ulbrich (1977) obtained some deviations in the estimation 
of rainfall-rate below the actual value. They introduced 
shape-factor in the distribution function for analysis to 
match the experimental results. Later, a linear relationship 
between the radar reflectivity factor and rainfall rate was 
presented by List (1988). But it showed deviations from 
earlier results. To get better correlation, Ulbrich (1992), 
Torres et al. (1994) proposed a power relationship 
between the integral parameters which was a good fit with 
the experimental data. 
 
Thus, different attempts have been made to build up 
appropriate model connecting different parameters for 

satisfactory explanation of the observed raindrop size 
distribution (Ulbrich and Atlas, 1998; Timothy et al., 
2002; Asen and Gibbins, 2002). 
 
In this paper, an empirical model has been formulated to 
explore the situation. The gamma distribution function for 
rain-drop is chosen suitably through which the 
expressions of the characteristics of radar reflectivity 
factor (Z) and rainfall rate (R) have been deduced. The 
numerical computations are carried out to study the 
variation of the basic parameters. The results are 
presented graphically along with an earlier work 
(Feingold and Levin, 1986). 
 
MATHEMATICAL FORMULATIONS 
 
In the present model, the form of the three-parameter 
gamma distribution functions has been taken as 
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where, D is the drop diameter and N(D) the number 
density. N0, µ and Λ are three parameters representing 
concentration scaling parameter, distribution shape factor 
and slope coefficient, respectively. The general form of 
three-parameter gamma distribution function is chosen 
which is capable of describing a broader variation in 
raindrop size distribution than an exponential distribution. 
One of the integral parameters of interest is the rainfall 
rate R, defined by 
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where, v (D) is the terminal velocity of rain-drop in still 
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air, and at standard pressure and temperature. In equation 
(2), it has been assumed that there are no effects of 
turbulence and vortex on v(D). The effects of wind are 
also neglected and all the calculations are done in the 
ground level. The terminal velocity has been taken from 
Atlas and Ulbrich (1977). In the presence of turbulence, 
for high Reynolds number, very often the modified 
velocity expression is taken into account (Best, 1950; 
Beard, 1976). The widely used form of v(D) is the power 
law, given by 
v (D) = cDγ     (3) 
where, D varies from 0.5 mm to 5 mm. This occurs for 
the most type of rainfalls with the coefficients γ = 0.67 
and c = 17.67 m.s−1mm−0.67, (Atlas and Ulbrich, 1977). 
 
From equations (3) and (2), the expression of rain rate (R) 
can be derived as 
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Γ(x) is the complete gamma function, i.e.,  

1
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Another integral parameter is the radar reflectivity factor 
Z, defined as 

6
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Integrating (6) with the use of (1), one can get 

0
6

(6 )
( )

NZ µ

µ
µ+

Γ +
=
Λ Γ

     (7) 

It is found that all the dual measurement methods for this 
work involve the ‘measurable (P)’ which can be 
represented by 
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min

( ) 
D

P
P

D

P c D N D dD= ∫    (8) 

where, cp and p are constants and varies with the 
‘measurable’. Dmin and Dmax are minimum and maximum 
diameters, respectively. Here it has been assumed that 
Dmin → 0 which is physically reasonable. But Dmax → ∞ 
has been chosen just for computation (Ulbrich, 1985). For 
all ‘measurables’, a suitably produced table is known 
(Ulbrich, 1992). Choosing the total number of drops NT 
per unit volume of air to be 
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the mass weighed mean diameter Dm as (Ulbrich and 
Atlas, 1998). 
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with p4 and p3 as the 4th and the 3rd moments of DSD 
respectively, and the nth moment 

( ) n
np D N D dD= ∫ ,    (11) 

one can get from equations (10) and (11),  
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Following Ulbrich and Atlas (1998), the median volume 

diameter (D0), can be written as 0
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From equation (9) and (7), one can deduce 
6
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Thus, the rain rate equation (4) becomes 
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Equations (14) and (15) signify that Z and R are directly 
proportional to the total number of drops per unit volume, 
whereas Z is proportional to the 6th power of the mean 
diameter and R is proportional to the (3+γ)th power of the 
mean diameter. It is notable that prefactors of these 
expressions are solely dependent on µ (shape parameter 
of the distribution function). 
 
Z-R relations 
Generally, the relationship between the radar reflectivity 
factor (Z) and rain rate (R) is not unique. Actually, there is 
a fundamental uncertainty in the Z-R relationship. 
However, it is possible to derive Z-R relationship on the 
basis of raindrop size distribution and the terminal 
velocity v (D) of the drops at the ground level. 
Empirically, it can be shown that there exists a    Z-R 
relationship in the form of power law. The relationship 
can be derived by substituting the total number of drops 
per unit volume (NT) in equation (15), which yields 

3410 (6 )  
6 3 (3 )

mDZ R
c

γ
µ

π µ γ µ

−
⎡ ⎤ Γ +

= ⎢ ⎥+ Γ + +⎣ ⎦
  (16) 



De et al. 

 

829

The expression (16) is analogous to the form Z=CzR (List, 
1988) for equilibrium rainfall condition which are 
observed during steady tropical rain. Here the prefactor 
depends on the mean diameter (Dm) and the distribution 
shape parameter (µ). For the case of constant Dm and valid 
range of µ, the prefactor in equation (16) may be 
determined. The above relation remains valid even if Dm 
is not constant. In that case, Dm−R relationship is required 
such that Z−R relationship may be adjusted. 
From equation (15) and (16) one can get 
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Equation (17) can be treated as a power relationship 
between Z−R, where the number of drops per unit volume 
(NT) is occurring in the prefactor. This prefactor may be 
determined from NT−R relationship. 
 
Combining equation (9), (12) and (4), another Z−R 
relationship can be deduced, which is given by 
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The Z-R relationship is alike to the general form obtained 
from Torres et al. (1994) given by  
Z = aRb       (19) 
where, a is the prefactor of Z−R relation and b is the 

power of Z−R relation. Substituting 6
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Plot of b−µ is shown in figure1 for γ = 0.67. From the 
figure, it is seen that the graph gives an asymptotic nature 
for µ < −3.67. Simultaneously for b=1, the Z−R 
relationship in equation (20) becomes independent of NT 
and for, b=1.634, the relationship is independent of Dm. 
So, two special cases arise, where the former may be 
regarded as the drop number independent case and the 
later one as the mean drop diameter independent case. 
Thus the range of b may be written as 1 < b < 1.634, and 
hence, the values of µ < −3.67 are invalid. It is in good 
agreement with the value of µ provided by many of the 
earlier investigators (Ulbrich, 1983; Wills and Tottleman, 
1989; Tokay and Short, 1996). But, analytically no upper 

limit of µ may be defined. However, it is found that for µ 
< 0, the integral parameters give negative moments which 
are not physically relevant. So the lower limit may be 
rescaled as µ < 0. Ulbrich and Atlas (1998) found that the 
central 60% data lies in the range −1.5 < µ < 3 with three-
parameter gamma distribution. Thus the scale of µ has the 
range 0<µ<3. 

 
Fig. 1. Dependence of b on DSD shape parameter 
considering exponent of (3) as 0.67. b is the power of    
(Z-R) relation. 
 
Rain Parameter Diagrams 
Combining equations (9) and (12), one can get 

0 (3 ) T
T

m

NN N
D

µ µ
µµ= Λ = +    (21) 

Equation (21) relates the intercept coefficient (N0) with 
the number density of drops in a volume of air (NT) and 
mass-weighted mean drop diameter (Dm). Simultaneously, 
it is dependent in the shape parameter µ. The dependence 
of NT−Dm relationship on µ is shown in figure 2, for fixed 
N0 (8000 m−3.mm−(1+µ)) and R (10 mm.h−1). Now 
considering µ=1.5, the plots of NT − Dm are given in 
figure 3 for different values of N0 using (21), and also for 
different rain rates R using (15). Clearly figure 2 and 
figure 3 can be used for the selection of the Z−R relation 
to be used. 

 
Fig. 2. NT - Dm for different values of µ for eq. (21) and 
eq. (15). 
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Fig. 3. NT - Dm for different N0 and R at constant µ 
according to eq. (21) and eq. (15) respectively. 
 
Therefore, combining equations (15) and (21), the 
relationship between Dm and R can be established as 

1
4 (3 )

0

10 1 (3 )  
6 ( )mD

c N

µ γγ µ
π µ

+⎡ ⎤⎧ ⎫Γ + +
= ⎨ ⎬⎢ ⎥Γ⎩ ⎭⎣ ⎦

× 

×
1 1

(3 )(3 )  Rµ µ γµ ++     (22) 
 
The prefactor of the above equation depends on the shape 
parameter µ, the range of which is predicted before. So, 
considering the mean value of shape parameter for certain 
value of N0 (8000 m−3.mm−(1+µ)) and with Ulbrich’s values 
of γ and c, one can get 
Dm = 1.886 R0.18,     (23) 
the plot of which is shown in Fig.4 along with the results 
of Feingold and Levin (1986). 

 
Fig. 4. Comparison of empirical relation and experimental 
results. 
 
Therefore, using (12) in equation (22), the expression of 
slope coefficient can be obtained as 
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In equation (24), the prefactor and the exponent 
relationship is solely dependent on the shape parameter µ. 
Considering the mean value of µ, Atlas and Ulbrich’s 
values of γ and c and Marshall and Palmer’s value of N0, 
the equation (24) yields 
 
Λ = 3.708 R−0.18     (25) 
 
This Λ−R relationship differs a little from the proposed 
A−R relationship of Uijlenhoet (2001). Corresponding 
plot of Λ−R is shown in Fig.5. 

 
Fig. 5. Λ – R plot. 
 
Combining equations (15) and (21), NT−R relationship 
may be deduced, where the prefactor and the exponent are 
dependent on the shape parameter (µ) through 
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For predicted range of µ and taking Atlas and Ulbrich’s 
values of γ and c, and also Marshall and Palmer’s value of 
N0, the equation (26) yields 
 
NT = 563.67 R0.29     (27) 
 
This NT − R relationship is comparable to the results of 
Feingold and Levin (1986). The NT −R plot has been 
shown in Fig.6. 
 
CONCLUSION 
This alternative approach for the determination of three 
parameters  of  DSD  seems  to  be   quite   useful   in   the  
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Fig. 6. NT – R plot. 
 
analyses of their relative variations under different 
circumstances. The method of approach can justify the 
results obtained from lognormal distribution. More 
refinement of this present analysis can be achieved 
through the inclusion of other processes, e.g., coalescence 
and evaporation in the estimation of raindrop size 
distribution. The interesting feature in this three parameter 
model lies in the selection of scaling parameter within the 
choice of empirical approximation for the estimation of 
drop size distribution. The other parametric variations 
derived from the present analysis have been compared 
with the experimental results of the earlier workers 
(Feingold and Levin, 1986; Uijlenhoet, 2001). 
 
The drop size distribution which is represented hereby the 
general form of gamma distribution is found to have 
better correspondence with experimental results (Maiciel 
and Assis, 1990). The prefactors of Z−R relations are 
dependent on the type of rainfall (convective or 
stratiform). So, under different climatological conditions, 
Z−R relation may vary. Also, from figure, it is seen that 
Dm increases very rapidly for the stratiform rain, where as, 
for the convective types of rain, Dm increases very slowly. 
In fact, for higher rain rates (R > 40 min.h−1), µ becomes 
almost constant. The slow variation of Dm suggests that 
DSD might be approaching to the steady state condition. 
 
The graphical method of solution for different values of 
NT / Dm has been determined in this work which may be 
taken as a process to resolve the uncertainty in 
determining the variation of Z with R. 
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