
SENRA Academic Publishers, Burnaby, British Columbia
Vol. 3, No. 1, pp. 691-700, 2009
ISSN: 1715-9997

1

A JAVA TCP SERVER LOAD BALANCER:
ANALYSIS AND COMPARISON OF ITS LOAD BALANCING ALGORITHMS

*Majdi Al-qdah1 and Mohd Khir Bin Abu Yan2

1Faculty of Computer Science, University of New Brunswick, Canada
2Faculty of Information Technology, Multimedia University, Malaysia

ABSTRACT

In this study, a TCP server load balancer (SLB) programmed in Java is proposed as an affordable alternative to
commercial or open source server load balancers for small companies by having all basic server load balancer features in
order to maximize the usage of small companies financial, human and hardware resources. The features include load
balancing algorithms namely Round Robin, Random, Least Connection and Hash IP Address. The Java TCP Server
Load Balancer employs Rules which consist of the service, Virtual IP Address model, load balancing algorithm, and
keep-alive. The Java TCP Server Load Balancer features are real server Health Checking and Graphical User Interface
(GUI) for ease of configuration and administration. Subsequently the algorithms included in the balancer are studied and
analyzed to compare their performance in the Linux Operating System environment with network traffic on different
applications in order to find the most optimal use of the load balancing algorithms in the Java TCP Server Load
Balancer. Analysis and comparison of the load balancing algorithms are conducted in experiments involving a number of
test cases with clients, the Java Server Load Balancer, and real servers hosting HTTP and FTP applications. The most
important conclusion from the experiments is that the performance of the two services tested namely HTTP and FTP is
not actually directly influenced by the load balancing algorithm.

Keywords: Java, TCP, server, load balancer, balancing, algorithms.

INTRODUCTION

In the early years of websites, it was perfectly normal to
have only one web server to serve million of requests
from clients. This is due to the fact that most of the
websites at that time have only static contents such as
HTML and a few images (Ampornaramveth and
Sanguanpong, 2002; Bourke, 2001). A server with
average resource capacity was able to process these
requests within acceptable response time to the clients
(Casalicchio and Colajanni, 2001). As time went by,
contents of websites have gradually shifted from static to
dynamic types or in the case of FTP sites the downloaded
file size is getting bigger. More websites are becoming
interactive and more business driven websites, FTP sites
and email service (Webmail) turn up as businesses see the
opportunity of expanding their customer base through the
Internet to gain more profit (DeRienzo, 2007). This has
lead to websites having more dynamic contents due to
data encryption, database applications, business logic,
contents reformatting and others while FTP sites add
more space for files and email service gets more
subscribers (Chatterjee et al., 2005; Feng et al., 2000).
Unfortunately, this causes these servers to process more
data and receive more connections from clients. By using
only one server, the service response time to clients starts
to increase and in the Internet world even a few seconds
increase can result in companies losing customers (Ho et
al., 2004; Hong et al., 2006). The first reaction to this
setback is to upgrade the server hardware such as CPU

and RAM. This approach has had its own problems since
there is a limit to hardware capacity of any server and its
network components (Extremenetworks, 2007). Network
engineers worked hard to find a viable solution to this
problem and eventually came up with a clever solution.
This solution is server load balancing. A Server load
balancer is able to make a group of servers behind a
server load balancer appearing to clients as a single server
and is capable of distributing clients’ requests statically or
dynamically to the actual servers (real servers) that
provide the services to the clients (Viswanathan, 2001).

Load Balancing Algorithms
A server load balancer typically works by load balancing
traffic to the real servers based on load balancing
algorithms (Lu and Lee, 2005; Min et al., 1999). There
are various load balancing algorithms used, with the most
common ones to be Round Robin, Random, Least
Connection, Source IP Address Hash (Hash IP), URL
hash, and Cookie. There are also custom or proprietary
load balancing algorithms which were developed by
commercial server load balancer vendors or were
developed for research. The algorithms are usually the
variants of the common load balancing algorithms such as
Weighted Round Robin or Weighted Least Connection.
The purpose of these types of algorithms is usually to
improve the performance of load distribution to the real
servers by getting as much information as possible about
the real servers or clients’ states so that the server load
balancer is able to determine the optimal traffic
distribution.
 *Corresponding author email: majdi.qdah@gmail.com

Canadian Journal of Pure and Applied Sciences

692

MATERIALS AND METHODS

The Java TCP SLB Software Operation
The Java TCP server load balancer is a software
application written in Java that accepts TCP connections
from clients and then distributes these connections to real
servers which serve the clients’ requests for specific TCP
based services such as HTTP or FTP. The server load
balancer is placed between the clients and the real servers
in the network connections path. The client connections to
the real servers are distributed using load balancing
algorithms such as Round Robin or Least Connection.
The load balancing configuration is done only on the Java
TCP Server Load Balancer itself while the real servers
provide the services to the clients. The Java TCP Server
Load Balancer offers service availability discovery
through Health Checking feature. The Java TCP Server
Load Balancer application is administered and configured
by using a Java GUI accessible from the host where the
Java TCP Server Load Balancer is running.

Load Balancing Algorithms Comparison
The purpose of the comparison is to find the most optimal
use of load balancing algorithm in the Java TCP Server
Load Balancer. This is performed with simulated traffic
from clients to real servers. In the Round Robin
algorithm the traffic is sent to the real servers in ordered
sequence and repeated in a loop. Each of the real servers
receives equal number of connections from clients
regardless of its capacity or load. The Random algorithm
main use is to distribute connections randomly to any of
the real servers. In the Least Connection algorithm,
traffic is distributed to the server that has the least

connections and the real server handles connections
equally with other available servers. The Hash IP Address
algorithm causes the subsequent connections from the
same client IP address to connect to the real server where
the first connection from that IP address is connected.

The Design
Network Architecture
As figure 1 show, the Java TCP Server Load Balancer
runs on a host which has at least two network interface
cards (NIC). One NIC is used for outside network
connection such as Wide Area Network (WAN) and the
Internet. The other NIC is used for the internal network
where the real servers are located or inside a Local Area
Network (LAN). Figure 2 shows the interface of the
Load Balancing Algorithm.

In using the SLB, below is an example of a step-by-step
how-to based on specific requirement below:

Service name: http
Service port: 80
IP Address: 0.0.0.0
Terminate on Disable: No
Half Close: Yes
Connection TimeOut: 2 seconds
Connection Failure Limit: 5
Real servers: realsever1.fit6z.com
 realsever2.fit6z.com
 realsever3.fit6z.com
 realsever4.fit6z.com
Algorithm: Round Robin
KeepAlive: HTTP

Fig. 1. Overall network architecture.

Al-qdah and Yan

693

Frequency: 60 seconds
TimeOut: 5 seconds
Doc Path: /index.html
Response Code: 200
Doc Text: TARGET

In the experiments performed, the HTTP and FTP
services were used for testing. Ten different clients with

different private IP addresses were configured to simulate
the traffic requesting for the services. Automated scripts
on each client were configured to request the services
above at thirty minutes interval. Each client had a script to
measure the services’ response time while the Java TCP
Server Load Balancer and the real servers have a
monitoring program to measure used resources: CPU and
Memory load.

Fig. 2. Server LB tab.

Fig. 3. Experiment network diagram.

Canadian Journal of Pure and Applied Sciences

694

Comparison Metrics

Service Response Time
This is the most important metric as the performance of
the service is very dependent on this metric. This metric
show how long the client takes to complete access to the
service. This metric has a definition that varies slightly
from service to service. In HTTP, it is defined as the time
it takes for a client to completely browse and download
pages from a website with pre-configured path/links using
Iceweasel add-on iMacros; while in FTP, it is defined as
the time it takes for a client to complete a single FTP
session to the FTP server by authenticating itself and then
downloading 10 files with different sizes until the
connection is closed.

Real Server and Java SLB CPU and Memory load
CPU and Memory load is defined as the total percentage
of CPU and free Memory on the real server and the Java
TCP SLB (RADirect, 2007). The CPU and Memory load
on the Server Load Balancer is a good indication of how
well is the performance of the individual algorithm
running on SLB since the SLB software is the most active
application running during the experiment in the SLB.
However the CPU and Memory load on the real servers
are not good indicators of the individual algorithm
performance because the CPU and Memory load is the
result of the process of accessing and running the
application such as web server or FTP server. It is not the
load from running the SLB software. However in order to
see the performance of the algorithm, the distribution of
the load among the servers was used. This can be
achieved by calculating the standard deviation of the data
gathered from the real servers CPU and Memory load.
This is where CPU and Memory load on the real servers
can be used, that is to measure the distribution of the CPU
and memory load. The smaller the standard deviation the
more even the distribution of the load among the real
servers, which implies a better algorithm.

The experiment objective was to compare four load
balancing algorithms which were employed by the Java
TCP Server Load Balancer. In order to simulate real life
environment, ten clients, four real servers and one
monitoring station were required for the experiment apart
from the most essential host running the server load
balancer as illustrated in figure 3.

RESULTS AND DISCUSSION

Each client recorded the individual response time from
each service test. One file was created for every service
on each client using the script on the client. This file
contained the response time from each algorithm test
performed when the SLB was running Linux Debian 4.0.

HTTP
The average response time from each load balancing
algorithm test was computed for each client for the HTTP
service with SLB running on Linux Debian and was
recorded in table 1.

The average of the values for each algorithm was then
computed to get the average for specific algorithm
response time using all the values from the clients. Based
on the results from table 1, the algorithms’ response times
are close to each other, which imply that the performance
of the HTTP service is generally the same among the real
servers no matter which algorithm was used. Figure 4(a-
d) shows the CPU load on the SLB against running each
algorithm for thirty minutes.

These results show that the distribution process of the
load on the SLB for HTTP service was very light. It was
less than 10 percent of CPU usage on average for any
algorithm. This indicates that the SLB does not require
high CPU power to process clients’ HTTP requests.
Possible reasons for this event is the size of files i.e. data
that was transferred from real servers to clients which was

Table 1. HTTP Service Response Time.

Service Average Response Time (seconds)
Round Robin Hash IP Least Conn. Random

Client 1 239.56 244.68 248.38 249.84
Client 2 291.12 125.94 299.85 303.45
Client 3 209.52 212.47 216.86 219.69
Client 4 224.54 227.84 233.24 236.28
Client 5 194.78 197.26 199.53 202.45
Client 6 219.41 225.44 225.11 231.00
Client 7 209.29 207.81 210.15 211.14
Client 8 115.05 115.47 116.82 118.54
Client 9 255.09 258.66 261.22 263.04
Client 10 165.18 165.93 167.24 174.11
Algorithm Average Response
Time (seconds) 212.35 198.15 217.84 220.95

Al-qdah and Yan

695

not very large. Thus the transfer of the static HTML files
and images do not require high CPU usage. The total size
of the website on the real server was 152 MB but the
majority of individual websites files were small.

Figure 5(a-d) shows the Memory load on the SLB against
running the algorithm for thirty minutes and a table 2
shows the maximum Memory usage in each thirty minute
test.

The above results show that generally the SLB Memory
usage gets higher as the test progresses. The difference is
in the pattern of Memory usage. The pattern for Round
Robin algorithm is especially a little bit different than

those of the other three algorithms. With Round Robin,
the usage fluctuation is significant; it is relatively high
and occurs quite early compared to other algorithms.
Looking at the Maximum Memory Usage table, Round
Robin has the lowest usage of Memory. This means that
the size of fluctuation of usage of the Round Robin
algorithm actually is similar to the other algorithms
because the graphs of the other three algorithms have a
larger maximum value of y-axis so it appears that the
fluctuation of usage is smaller. The difference with Round
Robin is that the fluctuation of usage starts early. These
results also show that for HTTP service, Round Robin is
the best algorithm in terms of Memory usage on the SLB.

Fig. 4(a). Round Robin. Fig. 4(b). Hash IP Address.

Fig. 4(c). Least Connection. Fig. 4(d). Random.

Fig. 5(a). Round Robin. Fig. 5(b). Hash IP Address.

Fig. 5(c). Least Connection. Fig. 5(d). Random.

Canadian Journal of Pure and Applied Sciences

696

Figure 6 (a-d) shows the CPU load on the real servers
against running each of the algorithms for thirty minutes.

Based on the above results, the CPU usage on the real
servers is very low for the same reasons mentioned
previously i.e. the HTML files and images are small and
also the HTTP server processes the client static files
requests requiring only low CPU power. There is also no
significant difference in performance among the
algorithm. As mentioned under the “performance metric”,
it is not the CPU or Memory usage that indicates
algorithm performance, it is the distribution of the load
that is important. From these results since the load on
each real servers are close to each other, it means that the
load is distributed evenly among the real servers.

Figures 7(a-d) to 10(a-d) show the Memory load on the
real servers against running each one of the algorithms for
thirty minutes and tables that show the maximum
Memory usage in each thirty minute test. Tables 3 to 6
show the maximum memory usage for each one of the
algorithms.

The results show that in all test cases the free Memory
was decreasing as the tests progressed. This was expected
and the only difference was just the rate of usage towards
the end of the test and the maximum usage. There was no
significant event that needed attention based on these
results.

FTP
The average of response times from each load balancing
algorithm test was calculated for each client for FTP
service with SLB running on Linux Debian and recorded
in the table 7.

Based on the results from the table, the algorithm
response times are quite close to each other which imply
that the performance of the FTP service is generally the
same among the real servers no matter which algorithm is
used. This results show that the distribution process of the
load on the SLB for FTP service requires more than 30
percent of CPU usage on average for any algorithm. This
indicates that the SLB requires significant CPU power to
process client request to transfer files. Possible reason for
this event is the size of files i.e. data that is transferred
from real servers to clients is bigger than that of in HTTP
service. Thus the transfer of ten files with multiple sizes
requires significant CPU usage. Also, the results show
that generally the SLB Memory usage gets higher as the
test progresses except for Hash IP Address and Least
Connection algorithms. In Hash IP Address test, the rate
of Memory usage decreases towards the end of the test
(increase of the graph means increase of free Memory)
while with Least Connection the Memory usage drops
very rapidly after about 20 minutes. A possible
explanation for this outcome is that the FTP session
finishes early compared to other algorithms. The Least

Table 2. SLB maximum memory usage.

Java SLB Round Robin Hash IP Least Conn. Random
Maximum Memory Usage
(kiloBytes) 1600 3800 2800 2800

Fig. 6(a). Round Robin. Fig. 6(b). Hash IP Address.

Fig. 6(c). Least Connection. Fig. 6(d). Random.

Al-qdah and Yan

697

Connection algorithm had the lowest usage of Memory.
This value does not take into account the Memory usage
drop because the values after the drop are not likely

contributed by the FTP session. It is the maximum usage
from the start of the test until the Memory usage starts to
drop.

Round Robin

Fig. 7(a). Real Server 1 Fig. 7(b). Real Server 2

Fig. 7(c). Real Server 3. Fig. 7(d). Real Server 4.

Table 3. Maximum memory usage with Round Robin.

 real server 1 real server 2 real server 3 real server 4
Maximum Memory Usage
(kiloBytes) 3200 3500 2800 2700

Hash IP Address

Fig. 8(a). Real Server 1. Fig. 8(b). Real Server 2.

Fig. 8(c). Real Server 3. Fig. 8(d). Real Server 4.

Table 4. Maximum memory usage with Hash IP Address.

 real server 1 real server 2 real server 3 real server 4
Maximum Memory Usage
(kiloBytes) 500 2600 2400 1100

Canadian Journal of Pure and Applied Sciences

698

In addition, the results show that for FTP session, the real
servers have used a significant CPU power. There are two
important characteristics that can be concluded: the first

one is the closeness between the graph lines representing
the CPU usage load and the second one is the fluctuation
of individual line. The first characteristic represents the

Least Connection

Fig. 9(a). Real Server 1. Fig. 9(b). Real Server 2.

Fig. 9(c). Real Server 3. Fig. 9(d). Real Server 4.
Table 5. Maximum memory usage with Least Connection.
 real server 1 real server 2 real server 3 real server 4
Maximum Memory Usage
(kiloBytes) 2200 1700 1200 2800

Random

Fig. 10(a). Real Server 1. Fig. 10(b). Real Server 2.

Fig. 10(c). Real Server 3. Fig. 10(d). Real Server 4.

Table 6. Maximum memory usage with Random.

 real server 1 real server 2 real server 3 real server 4
Maximum Memory Usage
(kiloBytes) 1800 (N.A.) 1250 1300

Al-qdah and Yan

699

load distribution among the real servers. Closer graph
lines mean a more even distribution of load. The second
characteristic represents the change of load on that
particular real server. It can be observed that each graph
shows both characteristics but differ in magnitude. The
graph that has the closest lines with each other is the
Least Connection algorithm graph and the least is the
Random algorithm graph. This means Least Connection
algorithm distributes load the most even among the
algorithms and Random algorithm is the least efficient in
distributing the load evenly based on the CPU usage. It is
also observed that the Hash IP Address graph lines are the
least fluctuating and the most fluctuating is Random
algorithm. This is expected since Hash IP algorithm keeps
the same source IP address into the same real server. This
causes the CPU to process the same load from the same
client which results in least fluctuating CPU usage. The
real server results show that in all test cases the free
Memory was decreasing as the tests progressed. This is
expected and the only difference is just the rate of usage
towards the end of the test and the maximum usage. The
Memory usage is not directly contributed by the
algorithm; instead it is a direct result from the processes
running on the real servers themselves. There is no

significant event that needs attention based on these
results.

Load Balancing Algorithms Rank
Based on the previous tables that summarized the results,
it is possible to rank the algorithms in terms of the
efficiency of the algorithms in distributing requests to
specific application. The algorithm rank is shown in table
below:
(N.A. means Not Applicable)

Legend: RR = Round Robin
 HIP = Hash IP Address
 LC = Least Connection
 RD = Random

CONCLUSIONS

The Java TCP Server has been developed with big
improvement to an existing load balancing algorithms.
The most important of improvements is the addition of
two more algorithms namely Least Connection and
Random algorithms. In the experiment performed, three
performance metrics have been used to determine the best

Table 7. FTP Service Response Time.

Service Average Response Time (seconds)
Round Robin Hash IP Least Conn. Random

Client 1 300.11 338.26 319.27 336.49
Client 2 322.34 333.09 319.21 327.22
Client 3 321.91 302.50 340.92 344.02
Client 4 317.49 305.56 320.78 326.14
Client 5 332.97 356.43 326.97 328.49
Client 6 323.98 305.55 317.91 334.76
Client 7 388.45 371.68 346.08 345.18
Client 8 327.37 367.00 321.29 341.00
Client 9 326.45 330.74 337.63 339.72
Client 10 332.62 299.82 336.57 320.08
Algorithm Average
Response Time (seconds) 329.37 331.06 328.66 334.31

Table 8. Algorithms Rank with Linux.

ALGOIRTHMS’ RANK STD. DEV APPL HOST METRIC 1st 2nd 3rd 4th 1st Algo
Client Response Time HIP RR LC RD N.A.

CPU No significant difference SLB Memory RR LC RD HIP N.A.
CPU LC HIP RD RR

HTTP
Real
Servers Memory RD RR LC HIP 304.13
Client Response Time LC RR HIP RD N.A.

CPU No significant difference SLB Memory LC HIP RR RD N.A.
CPU LC RR RD HIP

FTP
Real
Servers Memory LC HIP RR RD 221.27

Canadian Journal of Pure and Applied Sciences

700

algorithm for each of the HTTP and FTP services. The
performance metrics are service response time, CPU load
and Memory load of the Java TCP Server Load Balancer
and the real servers. The most important conclusion from
the experiment is that the performance of the services
tested namely HTTP and FTP is not actually directly
influenced by the load balancing algorithm. Also, the
experiments have concluded that each of the Java TCP
Server Load Balancer algorithms distributes the load to
real servers exactly the way it was suppose to do. This is
proven by real servers CPU and Memory load usage data
and graphs, specifically the standard deviation value.
Smaller standard deviation means a more even load
distribution.

REFERENCES

Ampornaramveth, N. and Sanguanpong, S. 2002.
Optimization of Cluster Web Server Scheduling from Site
Access Statistics. [Online]. Available:
http://anres.cpe.ku.ac.th/pub/WebCluster-anscse2002.pdf
[2007, 02 April].

Bourke, T. 2001. Server Load Balancing. O’Reilly and
Associates, Inc., California, USA.

Casalicchio, E. and Colajanni, M. 2001. A Client-Aware
Dispatching Algorithm for Web Clusters Providing
Multiple Services. [Online]. Available:
http://www10.org/cdrom/papers/434/colajanni_html.html
#Sec:class [2007, 01 April].

Chatterjee, D., Tari, Z. and Zomaya, A. 2005. A Task-
Based Adaptive TTL Approach forWeb Server Load
Balancing. Proceedings of the 10th IEEE Symposium on
Computers and Communications. 877-884.

DeRienzo, F. 2007. Choosing a Hardware Load-
Balancing Device. Macromedia, Inc. [Online]. Available:

http://www.adobe.com/devnet/server_archive/articles/cho
osing_hardware_lbdevice.html [2007,05 April].

Extremenetworks. 2007. TechBrief Extreme Networks
Server Load Balancing [Online]. Available:
http://apps.extremenetworks.com/libraries/whitepapers/te
chnology/Server_load_balancing.pdf [2007, 02 April].

Feng, Y., Li, D., Wu, H. and Zhang, Yi. 2000. A Dynamic
Load Balancing Algorithm Based on Distributed Database
System. The Fourth International Conference/Exhibition
on High Performance Computing in the Asia-Pacific
Region, 2000. Proceedings. 2:949-952.

Ho, LK., Sit, HY., Ho, KS., Leong, HV. and Luk, RWP.
2004. Improving Web Server Performance by a
Clustering-Based Dynamic Load Balancing Algorithm.
Proceedings of the 18th International Conference on
Advanced Information Networking and Application. 2:
232-235.

Hong, YS., NO, JH. and Kim, SY. 2006. DNS-Based
Load Balancing in Distributed Web-server Systems.
Proceedings of the Fourth IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitous
Systems and Second International Workshop on
Collaborative Computing, Integration, and Assurance.
pp4.

Lu, YC. and Lee, LT. 2005. On implementation of an
efficient multi-purpose load balancing server. [Online].
Available:http://www.hpc.csie.thu.edu.tw/cthpc2005/pdf/I
I_4.pdf [2007, 01 April].

Min, D., Choi, E., Lee, D. and Park, B. 1999. A load
balancing algorithm for a distributed multimedia game
server architecture. 1999 IEEE International Conference
on Multimedia Computing and Systems. 2:882.

RADirect. 2007. Server Load Balancing with Radware's
WSD. [Online] Available: http://www.rad-
direct.com/Application-server-load-balancing.htm [2007,
03 April].

Viswanathan, V. 2001. Load Balancing Web
Applications. In O’reilly On Java.com [Online].
Available:http://www.onjava.com/pub/a/onjava/2001/09/2
6/load.html [2007, 02 April].

