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ABSTRACT 

 
In this paper, calculations of the phase velocity Vph of the dispersive nine-partial Rayleigh type waves (RTW9) were 
introduced in dependence on the kh (k is the wavenumber, and h is the layer thickness). The layered systems, consisting 
of a layer of Bi12SiO20 on a substrate of Bi12GeO20, and the reverse configurations were investigated. The calculated 
dispersion curves of the RTW9 lowest-order modes with both metallized and free surfaces have shown the existence of 
the non-dispersive nine-partial Zakharenko type waves (ZTW9) polarized like the Rayleigh waves. The non-dispersive 
ZTW9-waves split the RTW9 lowest-order modes into sub-modes with different dispersions, Vph > Vg and Vph < Vg, 
where Vg is the group velocity. The RTW9 phase velocity Vph is confined within a narrow Vph-range that can be 
convenient for some technical devices. Also, cubic crystals with strong piezoelectric effect can be used for different 
cubic-structure magnetoelectric devices. It was found that the coefficient of electromechanical coupling (CEMC) K2 for 
the RTW9 first type has its maximum value at kh ~ 5 for the structure Bi12SiO20/Bi12GeO20. The second type of RTW9-
waves was also studied, which can propagate only in the structure Bi12SiO20/Bi12GeO20, because there is the condition 
Vt(Bi12GeO20) > Vt(Bi12SiO20) for the speed Vt of the bulk transverse wave, Vt = [(C55/ρ)(1 + K0

2)]1/2 with 
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2
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2
0 / εCeK = . It was also discussed the existence possibility of new supersonic surface waves with the in-plane 

polarization and Vph ~ Vl, where Vl represents the speed of the bulk longitudinal wave. Also, a calculation method with 
short computer program is described introducing the transverse and longitudinal dynamic CEMCs KDt and KDl. For 
comparison with [110] direction, the 200-x2-rotated direction was also studied concerning propagation of the first and 
second types of pure RTW9-waves. Here, the existence of RTW9 second type depends on the velocity equivalents of the 
layer and substrate, but not on the corresponding velocities Vt, and solutions for the Vph > Vt were also found. 
 
PACS: 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.Iv, 68.60.Bs, 74.25.Ld 
 
Keywords: layered systems, piezoelectric cubic crystals, dispersive Rayleigh waves, non-dispersive Zakharenko waves. 
 
INTRODUCTION 
 
Studying the propagation of elastic waves, especially the 
surface acoustic wave (SAW), in layered piezoelectric 
media have been of great interest since films deposited on 
supporting substrates are generally a requisite for acoustic 
devices (Nayfeh, 1991). Typically, a layered structure 
consists of two layers of different materials. Some 
technical devices, for instance, dispersive delay lines 
(Lardat et al., 1971) using layered structures to support 
propagation of dispersive waves require choosing 
materials for both the layer and substrate, in order to have 
a large range for the phase velocity Vph in which 
dispersive waves can be confined. However, for some 
technical devices, a very narrow Vph-range for dispersive 
waves can be preferable (Shiosaki et al., 1980) 
demonstrating a weak dependence of the dispersive wave 
Vph on the non-dimensional value of kh, where k is the 
wavenumber in direction of wave propagation and h is the 
layer thickness. Also, (multi)-layered systems can be used 
for parameter optimization of technical devices, for 
example, see (Dvoesherstov et al., 2003). There is the 

famous and classical book (Dieulesaint and Royer, 1980) 
on elastic waves in solids and their applications to signal 
processing. Also, an additional literature on crucial 
applications of SAWs can be found in (Henaff et al., 
1982). 
 
This paper relates to the studying the so-called “pure” 
dispersive nine-partial Rayleigh type waves (RTW9) in 
the layered systems, consisting of strongly piezoelectric 
cubic crystals Bi12SiO20 and Bi12GeO20, accounting the 
piezoelectric effect. Particularly, the attention of this work 
is paid to other possibilities to find dispersive SAWs with 
the Rayleigh-wave polarization in addition to the well-
known surface Rayleigh waves (Rayleigh, 1885). It is 
thought that the two-layer systems using the crystals 
Bi12SiO20 and Bi12GeO20 can be readily manufactured. It 
is noted that over several hundred piezoelectric ceramics 
(composites) are known, for example, see (Pohanka and 
Smith, 1988). Today, they are widely used for different 
applications such as filters and sensors, as well as 
actuators and ultrasonic generators. Concerning 
fabrication of a structure consisting of two dissimilar 
crystals, a process called wafer bonding (Goesele and 
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Tong, 1998; Alexe and Goesele, 2003) is commonly used 
in the semiconductor industry allowing two different 
materials to be rigidly and permanently bonded along a 
plane interface. 
 
In this paper, the RTW9-waves propagate in [110] 
direction for both materials as shown in figure 1. The so-
called work coordinate system {x1, x2, x3} in the Figure 
was obtained by 450-rotation around the Z-axis of the so-
called crystallographic coordinate system with the {X, Y, 
Z} axes corresponding to [100], [010], and [001] 
directions, respectively. It is noted that both the x1 and x3-
axes lie in the sagittal plane in Figure 1, and the x3-axis is 
perpendicular to the Figure plane, where the vector N is 
parallel to the surface normal, and the vector M is 
directed towards the propagation direction. The existence 
possibility of “pure” RTW6 and RTW9-waves was 
studied in the very famous works (Farnell and Adler, 
1972; Lardat et al., 1971). In the studied layered systems, 
a weak dependence Vph(kh) can occur with peculiarities 
such as the phenomenon called the non-dispersive 
Zakharenko type wave (ZTW) recently discovered in 
(Zakharenko, 2005a). The non-dispersive ZTW-wave can 
exist in complex systems, which possess dependence of 
the Vph on both the wavenumber k and the angular 
frequency ω. For example, the non-dispersive ZTW-
waves can split some higher-order modes of Lamb type 
waves in anisotropic plates (Anisimkin, 2004; Solie and 
Auld, 1973; Parygin et al., 2000) into several sub-modes 
(modes). It is noted that Anisimkin in 2004 has thought 
that higher-order modes of Lamb type waves possessing 
the non-dispersive ZTW-waves represent modes of new 
dispersive waves, because Lamb (type) waves are defined 
as dispersive waves. It is well-known that there are many 
types of dispersive waves polarized in the sagittal plane 
such as dispersive Rayleigh and Lamb type waves, as well 
as dispersive leaky Sezawa waves. The non-dispersive 
Stoneley type waves propagating at the interface of two 
solids can also have the “in-plane” polarization. Love 
type waves (Love, 1911) and surface Bleustein-Gulyaev 
(BG) type waves (Bleustein, 1968; Gulyaev, 1969) 
possess unique polarization perpendicular to the sagittal 
plane. However, the non-dispersive ZTW-waves 
representing extreme points of Vph(kh) can also split a 
mode of dispersive BG-waves (Liu et al., 2003). It is 
noted that the non-dispersive ZTW-waves were 
understood as corresponding dispersive waves in all 
papers before the work (Zakharenko, 2005a). 
 
Note that a dispersive mode can possess three non-
dispersive ZTW-waves that were schematically shown by 
Ivanov and Kessenikh (1987) for non-piezoelectric 
materials. Probably, their result shows how many non-
dispersive ZTW-waves can exist in the same mode of 
dispersive wave, omitting the fact that a lowest-order 
mode can split. Therefore, they introduced their results as 
being one dispersive mode, and their theory must be 

verified in experiments. It is thought that only structures 
with a relatively weak dependence Vph(kh) can possess 
non-dispersive ZTW-waves. It is thought that a layered 
system with the non-dispersive ZTW-waves could be 
used in technical devices instead of a monocrystal 
(several monocrystals). In addition, Zhang and Lu (2003) 
have also found that the lowest-order mode can split into 
several sub-modes that could be called the Zhang-Lu law. 
However, their result does not give information about 
where this splitting occurs and how many sub-modes can 
exist. 
 
Several layered systems are today well-known possessing 
a weak dependence Vph(kh) in the lowest-order mode of 
dispersive RTW-waves. Cubic crystals are crystals with 
zero temperature coefficients, and they can have strong 
piezoelectric coupling. However, transversely-isotropic 
crystals are widely studied in contrast to the cubic crystals 
studied in this paper. For example, there is a strong 
interest in the layered system, consisting of a weakly-
piezoelectric AlN-layer on a fused-quartz–substrate, for 
SAW-devices with a weak dependence Vph(kh), see 
(Volyansky et al., 1987; Bondarenko et al., 1983; 
Shiosaki et al., 1980; Tsubouchi and Mikoshiba, 1985). In 
the work of Volyansky et al. (1987) a calculation method 
was simplified omitting the piezoelectric effect, and a 
close correlation between theoretical calculations and 
experimental measurements of the Vph was obtained. A 
very interesting case was treated in the work of Solie 
(1971) for the layered system, consisting of a fused-
quartz–layer on a (YZ)-LiNbO3–substrate. In the case by 
Solie (1971), the first sub-mode is also confined in a 
narrow Vph-range ~ 3 ms–1 at small values of kh, and the 
next sub-modes are confined in larger Vph-ranges 
interrupting within the kh-range: 1.2 < kh < 3.35. The 
layered system, consisting of a ZnO-layer on a weakly-
piezoelectric GaAs-substrate, is also interesting because it 
is possible to monolithically integrate such SAW-devices 
with GaAs-electronics. The lowest-order mode with no 
shorting plane for that layered system was recently 
calculated in (Zhang et al., 2001). Here, the Vph-range is 
more than 300 ms–1 for the second sub-mode and smaller 
than 2.5 ms–1 for the first sub-mode with Vg > Vph at small 
values of kh. Schmidt and Voltmer (1969) have shown the 
lowest-order mode for the two-layer structure, consisting 
of a piezoelectric CdS-layer on a fused-quartz–substrate, 
where there is a relatively large dependence Vph(kh). The 
same Vph(kh) was found in (Nakamura and Hanaoka, 
1993) by studying the layered system, consisting of a 
ZnO-layer on a 1280-rotated Y-cut LiNbO3-substrate. In 
both latter cases, the peculiarities were not found in the 
RTW9 lowest-order mode. In the layered system, 
consisting of the isotropic silicon–layer on the ZnO-
substrate treated in (Farnell, 1978) the Vph of dispersive 
RTW-wave is confined between the RTW-wave for the 
ZnO-substrate and the corresponding bulk transverse 
waves for the substrate, because the latter is the Vph upper 
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limit. The next section describes theory of propagation of 
dispersive waves with the in-plane polarization. The third 
section describes different boundary conditions. Results 
and discussions are written in the fourth section. The fifth 
section discusses the other possibilities of finding waves 
with the in-plane polarization in addition to the dispersive 
Rayleigh type waves. For comparison with [110] 
direction, the sixth section describes theoretical results of 
studying in-plane polarized waves in more complicated 
case of monoclinic symmetry material constants when the 
theory of section 2 cannot be used.  
 
THEORY 
In different layered structures, consisting of piezoelectric 
materials, propagation equations are written, according to 
(Farnell and Adler, 1972; Lardat et al., 1971), with 
components of both the mechanic displacements Ui and 
the electric field EJ. The constitutive equations for a 
piezoelectric material can be expressed in terms of the 
strains and the electric field. Strains are related to 
mechanic displacements: τij = (Ui,j + Uj,i)/2 (Lyamov, 
1983). The governing mechanical equilibrium is STij,j = 0, 
and the governing electrostatic equilibrium is Di,i = 0, 
where STij and Di are the stress tensor and electric 
displacement components, respectively. The comma 
denotes coordinate differentiation with respect to xi. Each 
medium possesses the elastic Cpqrw and piezoelectric epqr 
coefficients, the dielectric constants εpq, and the medium 
density ρ. Because dispersive Rayleigh-polarized waves 
are treated in this paper, only two components of the 
mechanical displacements, U1 along the x1-axis and U3 
along the x3-axis in Figure 1, are used which lie in the 
sagittal plane. The components U1 and U3 as well as the 
components E1 and E3 can be written in view of plane 
waves: 
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where k1 and k3 are components of the wavevector Ks 
along the x1-axis and the x3-axis, respectively, and ω and t 
are the cycle frequency and time; j = (–1)1/2. U0

1,3 and 
E0

1,3 are initial amplitudes. The electric field EJ is defined 
by the electric potential φ: EJ = – ∂φ/∂ xJ, J = 1, 2, 3. 
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Fig. 1. The propagation direction in the layered system, 
where the vectors N and M are directed along the surface 
normal and propagation direction, respectively. Here the 
so-called work coordinate system {x1, x2, x3} is used, 
where the x2-axis is perpendicular to the Figure plane and 
the sagittal plane (x1Ox3). 

The piezoelectromechanical waves with polarization in 
the sagittal plane can propagate in a piezoelectric medium 
when the sagittal plane coincides with the symmetry plane 
of the medium, according to (Farnell and Adler, 1972; 
Lardat et al., 1971). In such propagation directions, for 
example, [110] propagation direction for cubic crystals, 
there are the following zero GLrw-components in the 
Green-Christoffel (GL) equation, (GLrw – δrwρVph)Ur = 0 
(Farnell and Adler, 1972; Farnell, 1978; Lyamov, 1983): 
GL21 = GL12 = GL32 = GL23 = GL24 = GL42 = 0. In the 
GL-equation, r and w run from 1 to 4, δrw is the 
Kronecker delta for r < 4 and w < 4, δrw = 0 for r ≠ w and 
δ44 = 0, Ur = {U1, U2, U3, φ}. Vph is the phase velocity, Vph 
= ω/k, where k is the wavenumber in direction of wave 
propagation. Therefore, the following equations can be 
written for the in-plane polarized waves: 
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In equation (2), C11 ≠ C33, C55, and C13 are the 
corresponding non-zero components of the elasticity 
tensor (Voigt notation). e15 = e31 and ε11 = ε33 are the non-
zero piezoelectric and dielectric constants, respectively. It 
is noted that for cubic crystals in [110] propagation 
direction there is the following relationship between the 
elastic constants C11 and C33: C11 = C55 + (C33 + C13)/2 
(Stoneley, 1955; Tursunov, 1967). Also, in Eq. (2) there 
are Al

2
 = 1 – (Vph/Vl)2 and At

2
 = 1 – (Vph/Vt5)2. Vl = 

[C11/ρ]1/2 and Vt5 = [C55/ρ]1/2 are the so-called velocity 
equivalents for [110] direction. However, they are the 
speeds of the bulk longitudinal and transverse waves for 
[100] direction, respectively. For [110] direction, the 
speed Vt of the bulk transverse wave is equal to Vt = 
[(C55/ρ)(1 + K0

2)]1/2, and the bulk longitudinal wave 
propagates with the speed Vl3 = [C33/ρ]1/2. K0

2 is called the 
static coefficient of electromechanical coupling (CEMC): 
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0 / εCeK = . However, in the case of C11 = C33, for 

example, in [100] propagation direction of cubic crystals 
(Zakharenko, 2005a) there is Vl3 = Vl. Also, many non-
cubic acoustic crystals with C11 ~ C33 can be readily found 
in (Landolt-Boernstein Int. Tables, 1985; Blistanov et al., 
1982). 
 
For definition, the non-dimensional complex component 
n3 is n3 = k3/k, and there are n1 = 1 and n2 = 0 in Eq. (2). 
For piezoelectric cubic crystals, the material constants in 
[100] direction {(C11 = C22 = C33, C12 = C13 = C23, C44 = 
C55 = C66); (e14 = e25 = e36); (ε11 = ε22 = ε33); ρ; (VL, VFT = 
VST, VRTW6)} transform into the following material 
constants in [110] direction {(C11 = C22, C33, C12, C13 = 
C23, C44 = C55, C66); (e15 = e31 = – e32 = – e24); (ε11 = ε22 = 
ε33); ρ; (VL, VFT, VST, VRTW9)}, where VL, VFT , and VST 
represent the speeds of the bulk longitudinal, fast, and 
slow transverse waves, respectively: VFT = (C66/ρ)1/2 and 
VST = [(C55/ρ)(1 + K0

2)]1/2. The material constants for the 
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cubic crystals Bi12SiO20 and Bi12GeO20 are given in table 
1 for both propagation directions. 
 
For convenience, the corresponding determinant for the 
determination of the complex component n3 can be 
transformed from Eq. (2) into the following view, after 
some transformations: 
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with m = n3
2 and )(1 55
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Expanding the determinant (3), the secular equation is 
obtained representing a sixth order polynomial for 
determination of the eigenvalues n3

(N), where the index N 
runs from 1 to 6. After some transformations, the obtained 
polynomial from (3) can be shown as follows: 
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The coefficients A, B, and C in (5) consist of both the 
corresponding elastic anisotropy terms and the 
corresponding terms K0

2, KDt, and KDl coupled with the 
piezoelectricity influence. The elastic constants are 
combined in the anisotropy term C2 (Zakharenko, 2005a; 
Zakharenko, 2006) which appears in the square brackets 
of the coefficients A and B in (5) and has the following 
view for the studied direction: 

Table 1. The characteristics for Bi12SiO20 and Bi12GeO20. The piezoelectric e14 and dielectric ε11 material constants are 
the same in both propagation directions. The corresponding elastic constants Cij are given in [N/m2] ×1010 and all the 
velocities are in [m/s]. 
 

[100] propagation direction 
Material ρ, 

[kg/m3] 
C11 C12 C44 e14, 

[C/m2] 
ε11, 10–10 

[F/m] 
Vt Vl VRTW2 

Bi12SiO20 9070 12.962 2.985 2.451 1.122 3.63735 1643.87 3780.35 1606.08 
Bi12GeO20 9200 12.852 2.934 2.562 0.983 3.336 1668.77 3737.59 1626.11 

[110] propagation direction 
Material C11 C33 C13 C55 C66 Vl VST VFT VRTW3 
Bi12SiO20 10.4245 12.962 2.985 2.451 4.9885 3390.19 1756.10 2345.21 1681.50 
Bi12GeO20 10.455 12.852 2.934 2.562 4.959 3371.07 1760.58 2321.68 1683.78 

 
Table 2. The non-dimensional anisotropy term C2 and the velocities Vt, Vl, and Vth for the piezoelectric cubic crystals 
in [100] propagation direction of (001) cut, in which Rayleigh-polarized waves do not coupled with the electric 
potential. 
 

Elastic constants Cij, 1010 
[N/m2]  

No 
Cubic 
crystal 

Structure 
type 

Density 
ρ 

[kg/m3] C11 C44 C12 

Anisotrop
y factor η 

Anisotrop
y term C2 

Velocity 
Vt [m/s] 

Velocity 
Vl [m/s] 

Velocity Vth

[m/s] 

Piezoelectric class 23 
1. NaClO3 NaClO3 2490 4.887 1.173 1.675 0.73 0.99 2170 4430 3370 
2. NaBrO3 NaClO3 3330 5.708 1.525 1.695 0.76 0.82 2140 4140 3192 

Piezoelectric class ⎯43m 
3. GaP ZnS 4301 14.110 6.260 7.030 1.77 – 1.30 3815 5728 2657 
4. GaAs ZnS 5316 11.810 5.940 5.320 1.83 – 1.32 3343 4713 2249 
5. β-ZnS ZnS 4091 10.460 4.610 4.640 1.58 – 1.07 3310 4897 2645 
6. ZnSe ZnS 5264 8.720 3.920 5.240 2.25 – 1.78 2729 4070 1063 
7. InSb ZnS 5790 6.720 3.040 3.670 1.99 – 1.54 2291 3407 1289 
8. CuCl ZnS 3530 4.500 1.342 3.711 3.40 – 2.58 1950 3570 i1303 
9. CuBr ZnS 4720 4.624 1.413 3.512 2.54 – 2.13 1730 3130 i546 
10. ZnTe ZnS 5636 7.130 3.120 4.070 2.04 – 1.60 2353 3557 1241 
11. CdTe ZnS 5849 5.351 1.994 3.681 2.39 – 1.93 1846 3025 417 
12. Tl3TaS4 - 6790 4.910 0.320 1.130 0.17    12.07   687 2689 2497 
13. Tl3TaSe4 - 7280 4.190 0.410 1.400 0.29  6.41   751 2399 2078 
14. Bi4(GeO4)3 eulytine 7120 11.580 4.360 2.700 0.98    0.03 2475 4033 3006 
15. Bi4(SiO4)3 eulytine 6800 13.570 5.180 2.270 0.92    0.21 2760 4467 3491 
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It is noted that the C2 in Eq. (6) is a universal non-
dimensional crystal characteristics, which can be suitable 
for all crystal symmetries, except the triclinic and 
monoclinic symmetries. However, for a particular case of 
C15, C35 << C55, C13, C11, and C33, the C2 is also suitable 
for the symmetries.  
 
The corresponding piezoelectric parts in (5) coupled with 
the static CEMC K0

2 are as follows: (4K0
2) or (1 + 4K0

2) 
in the coefficient A, the so-called dynamic CEMCs KDt 
and KDl in the coefficients B and C, respectively. The 
introduced non-dimensional characteristics KDt and KDl 
depend on both the cubic crystal anisotropy and the Vph: 
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It is clearly seen that the dynamic CEMC KDt depends 
only on the speed Vt5 of the corresponding bulk transverse 
wave. However, the dynamic CEMC KDl depends only on 
the speed Vl of the bulk longitudinal wave. Therefore, 
they can be called as transverse and longitudinal dynamic 
CEMCs, respectively. For dispersive waves, the Vph 
depends on the layer thickness kh, and hence, the KDt and 
KDl will also depend on the kh. The KDt originates from its 
value of K0

2(C55 – 4C13)/C33 at Vph = 0 and goes to its 
value of – K0

2(4C13 + 3C55)/C33 at Vph = Vt5. On the other 
hand, the KDl has its maximum value of K0

2C11/C33 at Vph 
= 0 and equals to zero at Vph = Vl. Both the dynamic 
CEMCs go to – ∞ with Vph → + ∞. Also, it is natural to 
note in Eq. (5) the following terms coupled with the cubic 
crystal anisotropy: 
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Figure 2 shows both the coefficients A0 and B0 as well as 
the KDt and KDl for the crystals Bi12SiO20, Bi12GeO20, and 
Bi12TiO20 in [110] propagation direction. Figure 2 clearly 
shows that values of the A0 and B0 can be one order 
greater than values of the KDt and KDl. It is noted that the 

anisotropy terms C2(Bi12SiO20) ~ 1.71, C2(Bi12GeO20) ~ 
1.55, and C2(Bi12TiO20) ~ 1.75 in [110] direction are 
significantly smaller than those in [100] direction, in 
which they represent the maximum possible C2 of suitable 
propagation directions: C2(Bi12SiO20) ~ 2.55, 
C2(Bi12GeO20) ~ 2.30, and C2(Bi12TiO20) ~ 2.64. Also, the 
threshold velocities Vth (Zakharenko, 2006) for the cubic 
crystals studied in Figure 2 are as follows: Vth(Bi12SiO20) 
~ 2826 m/s, Vth(Bi12GeO20) ~ 2795 m/s, and 
Vth(Bi12TiO20) ~ 2617 m/s. For comparison, the threshold 
velocities Vth for (001) [100] direction are: Vth(Bi12SiO20) 
~ 3216 m/s and Vth(Bi12GeO20) ~ 3160 m/s. Some 
piezoelectric acoustic crystals are listed in Table 2, in 
which the unique cubic crystals Tl3TaS4 and Tl3TaSe4 of 
the Chalcogenide family have very great values of C2. 
 
Using the crystal characteristics of Eqs. (7) and (8), Eq. 
(4) can be rewritten as follows: 
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After some transformations of Eq. (9), one can get the 
following equation 
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It is clearly seen in Eq. (10) that for a weak piezoelectrics 
K0

2 → 0 (K0
2 = 0 and KDl = KDt = 0) there is  
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The first factor in (11) represents equation corresponding 
to the pure electric potential wave: 

j2,1
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The second gives the following four roots: 
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which correlate with the roots of (Zakharenko, 2006) for 
(001) [110] propagation direction in non-piezoelectrics 
(Z-cut-X-direction in the crystallographic coordinate 
system).  
 
Introducing the new function y = m + A/3, polynomial (4) 
can be rewritten to the following view y3 + 3py + 2q = 0, 
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Fig.  2. The dynamic characteristics in [110] propagation direction for Bi12SiO20 (thin lines), Bi12GeO20 (normal), and 
Bi12TiO20 (thick): (a) KDt and KDl from Eq. (7), where there is KDl(Vph = Vl) = 0 and KDt < KDl; (b) the coefficients A0 
and B0 from Eq. (8), where there is A0(Vph = Vth) = 0 and B0(Vph = Vt and Vph = Vl) = 0. 
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for which the Cardano’s formula can be applied, for 
instance, see the reference-book (Bronstein and 
Semendyaev, 2000). The coefficients q and p are defined 
as follows: q = (A/3)3 – (B/2)(A/3) + C/2 and p = B/3 – 
(A/3)2. Three roots y1,2,3 depend on sign of the 
discriminant D, D = q2 + p3. If the D is negative due to p 
< 0, there are all three real roots. However, in the case of 
D > 0 there are one real and two imaginary roots. Also, if 
the coefficient C in (4) is positive, the real root is 
negative. It is clearly seen from (5) and (7) that the 
coefficient C can be positive both below the speed Vt and 
above the speed Vl. In addition, the coefficients A and B in 
(4) could be positive above the speed Vl for some cubic 
crystals with unique anisotropy properties, namely with a 
“gigantic” positive anisotropy term C2 that was studied in 
(Zakharenko, 2006). It is noted that the anisotropy term 
C2 can be both positive and negative, depending on the 
elastic constants. Therefore, there is a possibility to exist 
for the other type of surface waves polarized in the 
sagittal plane above the Vl, depending on both the crystal 
anisotropy and piezoelectric effect. For these waves, all 
complex/imaginary roots there are for polynomial (4). For 
the case of two real and four complex roots, there is also 
an existence possibility of in-plane polarized leaky waves 
with the Vph > Vt. 
 
Therefore, all six roots of polynomial (4) are as follows: 

3,2,1
6,5,4,3,2,1

3 3/ yAn +−±=    (14) 

 
According to (Bronstein and Semendyaev, 2000), three 
roots y1,2,3 are functions of values of w1 and w2, as well as 
of the roots 2/3j2/12,1 ±−=α  of the square 
equation x2 + x + 1 = 0: 

2112322112211         wwywwywwy αααα +=+=+=
   (15) 

where 
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It is noted that all three roots y1,2,3 can be also found using 
the well-known Cardano’s formula in the following view: 
y1,2,3 = ξ – p/ξ with ξ = [– q + sqrt(q2 + p3)]1/3. 
 
For each eigenvalue n3

(N) there is the corresponding so-
called eigenvector (U1

(N), U3
(N), φ(N)): 
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In addition, the components U1

(N) and U3
(N) can be also 

found from the first equation in (2) as follows: 
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which are equivalent, using Eq. (2). It is clearly seen in 
the latter equations that U1

(N) is imaginary, and U3
(N) is 

real depending on an imaginary n3
(N) that results in real 

φ(N). On the other hand, U1
(N) and U3

(N) can be real and 
imaginary, respectively, resulting in imaginary φ(N), if the 
second equation in (2) is treated. It is also noted that U1

(N) 
or U3

(N) can be chosen to be equal to unity for simplicity. 
The eigenvalues n3

(N) with negative imaginary part and 
the corresponding eigenvector components u1

(N) = U1
(N), 

u3
(N) = U3

(N), and u4
(N) = φ(N) are shown in Figure 3 for 

Bi12SiO20 and Bi12GeO20. Note that the n3
(3) is zero at Vph 

= Vt. 
 
All six eigenvalues n3

(N) in (14) must be taken for a layer, 
while only eigenvalues n3

(N) with negative imaginary part 
are left for a substrate, in order to have wave damping 
towards the depth of the substrate for the coordinate 
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Fig. 3. (a) The eigenvalues n3
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(3); and (b) the eigenvector components u1
(N), u3
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system shown in figure 1. Therefore, the complete 
mechanic displacements and the complete electric 
potential can be written as: 

( )[ ]∑ −+=Σ

N

NNN txkxkUFU ω3
)(

311
)(

3,1
)(

3,1 jexp  

   
( )[ ]∑ −+=Σ

N

NNN txkxkF ωφφ 3
)(

311
)()( jexp  (18) 

where F(N) are the so-called weight coefficients, and the 
index N runs from 1 to 3 for a substrate and from 1 to 6 
for a layer. 
 
For the free space, the Laplace’s equation of type ∆φ = 0 
is written in the following view: ε0(k1

2 + k3
2)φ0 =0, where 

ε0 is the dielectric constant for the free space, ε0 = 
8.854×10–12 F/m. Because the wavevector component k1 
in the propagation direction is given the same in each 
medium (in a layer, a substrate and the free space), the 
electric potential for the free space is written as: φ0 = 
F(0)exp(– k1x3)exp[j(k1x1 – ωt)]. The φ0 should decrease 
with increase in the coordinate x3. The Vph of such 
Rayleigh-polarized waves should satisfy boundary 
conditions described in the next Section. Suitable Vph of 
dispersive waves are found when the boundary conditions 
determinant equals to zero. 
 
BOUNDARY CONDITIONS 
 
Now both the complete mechanic displacements and the 
complete electric potential of Eq. (18) are substituted in 
the equations of mechanical and electrical boundary 
conditions based on the following requirements at both 
the interface of two solids (at x3 = 0 in Fig. 1) and the free 
surface, x3 = h: 
1) continuity of the mechanic displacement U1 at x3 = 0 

(U1
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L) where  
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2) continuity of the mechanic displacement U3 at x3 = 0 
(U3

S = U3
L) where  
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3) continuity of the normal component ST31 of the stress 
tensor at x3 = 0 (ST31

S = ST31
L) where  
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4) continuity of the normal component ST33 of the stress 
tensor at x3 = 0 (ST33

S = ST33
L) where  
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5) continuity of the normal component D3 of the electric 
displacements at x3 = 0 (D3

S = D3
L) where  
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6) continuity of the electric potential φ at x3 = 0 (φ S = φ 

L) where  
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7) equality to zero of the stress tensor component: ST31
L 

= 0 at x3 = h, where  
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8) equality to zero of the stress tensor component: ST33

L 
= 0 at x3 = h, where  
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9) continuity of the D3 at x3 = h (D3
L = D3

f) where  
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10) continuity of the electric potential φ at x3 = h (φ L = φ 

f) where  
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In the boundary conditions (19)–(28), the indices L and S 
refer to quantities relative to the layer and substrate, 
respectively, k1

L(N) = k1
S(N) = k1 = k. These equations form 

the equation set of ten homogeneous equations with 
unknown factors FL(N), FS(N), and F(0). Solutions for the Vph 
can be numerically obtained when the tenth-order 
boundary conditions determinant (BCD10), consisting of 
coefficients at the unknown factors, becomes zero. It is 
noted that BCD10 can be readily reduced to BCD9 for 
finding the RTW9 phase velocity because values of the φ 
and D3 can be taken to be not independent, for example, 
see (Farnell and Adler, 1972; Lardat et al., 1971; 
Ingebrigtsen, 1969). Once φ is given, a fixed value D3 is 
also given. Therefore, two boundary conditions (27) and 
(28) at the free surface can be written as single boundary 
condition for simplicity:  
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  (29) 
To study the dispersive RTW9-waves is a complicated 
problem that can probably be solved numerically. It is 
noted that the boundary conditions (19)–(29) are changed 
for the so-called case of “shorted” surface. It is also noted 
that for weakly-piezoelectric materials there is e15 → 0 
(e15 = 0) that can result in appearance of two BCDs 
instead of BCD9 substituting e15 = 0 in Eq. (2). The first 
BCD6 of sixth-order gives the suitable Vph for the non-
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piezoelectric RTW6-waves, and the second BCD 
corresponds to the electric potential wave. In this case, 
Eq. (4) goes into Eq. (11), which together with roots (12) 
and (13) give eigenvectors of the following view (0, 0, 
φ(N)) and (U1

(N), U3
(N), 0). Also, a BCD6 of sixth-order can 

be formed from the boundary conditions (19)–(29) for 
finding the Vph of Rayleigh-polarized Stoneley type waves 
(STW6). However, such a BCD6 is not described in this 
Section to minimize the paper size, because non-
dispersive waves propagating at the interface of two 
infinite solids were not found in the studied case. 
 
Figure 4 shows behavior of determinants investigating 
both dispersive RTW9-waves and non-dispersive RTW3-
waves. Real parts of the BCD9 for Rayleigh-polarized 
surface waves are given in Figure 4a in the Vph-range: 0 < 
Vph < Vt. Both boundary conditions of free and shorted 
surfaces were studied for the layered system 
Bi12SiO20/Bi12GeO20 and the reverse configuration. The 
insertion in figure 4a shows solutions for the dispersive 
RTW9-waves, which are close to the corresponding 
speeds Vt for the crystals Bi12SiO20 and Bi12GeO20. Figure 
4b shows the BCD3 imaginary parts for finding surface 
wave solutions in single crystals Bi12SiO20 and Bi12GeO20 
for the Vph-range using free and shorted surfaces. The 
insertion in figure 4b gives the solutions of surface 
RTW3-waves. For comparison, the BCD6 behavior for 
finding the Stoneley type waves, which could be localized 
at the interface between the crystals Bi12SiO20 and 
Bi12GeO20, is also shown in Figure 4b. It is noted that the 
absolute values of BCD9 for surface wave investigations 
in the studied structures are ten orders greater than those 
of BCD3 for the investigations in monocrystals that 
makes an additional difficulty to study layered systems.  
 
NUMERICAL RESULTS AND DISCUSSIONS 
 
In this paper, the numerical results are introduced 
concerning calculations of the Vph of the dispersive 
RTW9-waves, accounting the piezoelectric effect for both 

the Bi12SiO20-layer and the Bi12GeO20-substrate in [110] 
direction for both media, in which the sagittal plane 
coincides with the symmetry plane of the media. For the 
numerical calculations, the elastic Cijkl, piezoelectric eijk, 
and dielectric εij material constants, and densities ρ of the 
treated media were taken from (Aleksandrov et al., 1984; 
Blistanov et al., 1982). Figure 5 shows the lowest-order 
modes of RTW9-waves (the so-called first type of the 
waves (Lardat et al., 1971)), namely dependence of the 
RTW9 phase velocity on the non-dimensional value of kh, 
where k is the wavenumber in the direction of wave 
propagation and h is the layer thickness. In general, the 
RTW9 lowest-order modes must be confined between the 
piezoelectric non-dispersive three-partial Rayleigh type 
wave (RTW3) for the Bi12GeO20-substrate at kh → 0 and 
the wave for the Bi12SiO20-layer at kh → ∞. However, that 
is not so at small kh in both studied layered systems for 
both cases of the free and shorted surfaces due to some 
peculiarities, which will be further discussed. 
 
The dispersion relations in figures 5a (free surface) and 
5b (metallized surface) show the existence possibility of 
non-dispersive Zakharenko type waves (ZTWs) after the 
work of Zakharenko (2005a). For the free surface, the 
nine-partial non-dispersive ZTW9-waves exist at kh ~ 1.0 
in the both studied structures. However, for the metallized 
surface, they exists at kh ~ 0.5 showing a significant shift 
to smaller value of the kh. These non-dispersive ZTW9-
waves split the corresponding RTW9 lowest-order mode 
into several sub-modes with different dispersion (Vph > Vg 
or Vph < Vg, where Vg is the group velocity, Vg = dω/dk). 
Therefore, it is possible to state that each dispersive sub-
mode starts with a non-dispersive wave and comes to a 
non-dispersive wave. There are two sub-modes for each 
case in figure 5. The RTW9 group velocity must have one 
extreme point in each sub-mode, because the behavior of 
the Vg depends on the behavior of the Vph, Vg = Vph + 
kh(dVph/dkh), that was analytically shown in (Zakharenko, 
2005a). It is obvious that increasing function Vph(kh) leads 
to the inequality Vg > Vph due to dVph/dkh > 0. On the 
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Fig. 4. The determinant behavior for (a) the RTW9-waves for the structures Bi12SiO20/Bi12GeO20 and 
Bi12GeO20/Bi12SiO20 with the free surface (thick lines, kh ~ 1) and the shorted surface (thin lines, kh ~ 0.5); and (b) 
the RTW3-waves for Bi12SiO20 (squares) and Bi12GeO20 (cycles), where “DSt” represents the determinant BCD6 for 
finding the Stoneley type waves. 
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other hand, decreasing Vph(kh) results in Vg < Vph because 
dVph/dkh < 0. The non-dispersive Zakharenko waves (Vg = 
Vph ≠ 0) existing in a mode of dispersive waves can be 
described by the following formulas, using the well-
known Leibniz’s formula for the complex derivative 
d(u/v)/dx = (vdu/dx – udv/dx)/v2: 

0
d
d

d
d
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h

V
V
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V ph
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ph
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    (30) 

( )phg
ph VV

khkh
V

−=
1

d
d

    (31) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

g

phphph

V
V

h
V

h
V

1
d
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The relationship (30) between the derivatives of Vph 
shows that there is independence of the Vph on both the 
angular frequency ω and the wavenumber k in the same k-
ω-domain with Vg ≠ 0. The formulas (31) and (32) give 
clearance that formula (30) is satisfied as soon as Vph = Vg 
for the wavenumber k ≠ 0 and k < ∞. Note that the mass 
sensitivity of a sensor is generally defined as the relative 
velocity change due to the application of a thin non-
elastic mass of thickness hM and density ρM on top of a 
sensor surface. The normalized mass sensitivity can be 
also determined from the appropriate velocity dispersion 
(Jungnickel et al., 1997) because the sensitivity is 
proportional to the first derivative dVph/dkhM. Note that 
the higher derivatives of the Vph and Vg given in 
(Zakharenko, 2005a) can be also used to determine 
inflexion points (Zakharenko, 2005b). 
 
The presence of the non-dispersive ZTW9-waves shown 
by points in figure 5 significantly broadens the Vph-range 
of existence of the first type of dispersive RTW9-waves. 
The velocities Vph of the RTW9 first type start with the 
corresponding non-dispersive RTW3-waves for the 
substrates at kh = 0 and approach the corresponding non-
dispersive RTW3-waves at kh → + ∞. It is noted that for 
the same layered systems, according to the numerical 

results of (Zakharenko, 2005a) concerning [100] direction, 
the first sub-mode of the lowest-order mode of the non-
piezoelectric RTW6-waves at small values of kh lies out 
of the Vph-range between the corresponding two non-
dispersive RTW2-waves. The existence of the non-
dispersive ZTW9-waves at small values of kh also occurs 
in several layered systems (Solie, 1971; Zhang et al., 
2001). It is noted that the piezoelectric effect can 
significantly change the behavior of Vph(kh). Therefore, 
the electric potential φ must be considered together with 
dispositions of both the bulk longitudinal and 
corresponding transverse waves for materials in order to 
predict the existence possibility of non-dispersive ZTW-
waves in different layered systems. For instance, for the 
studied layered systems (see Table 1) there are the 
following velocities: VL(Bi12SiO20) > VL(Bi12GeO20) and 
VST(Bi12SiO20) < VST(Bi12GeO20). 
 
It is noted that the lowest-order modes for the studied 
layered systems are confined in a very narrow Vph-range 
being smaller than ~ 6 ms–1 that can be convenient for 
some technical devices (Shiosaki et al., 1980). This can 
be compared with lowest-order modes of other suitable 
layered systems (Volyansky et al., 1987; Solie, 1971; 
Zhang et al., 2001) which are of interest for the same 
purpose. It is noted that experimental techniques are 
currently unknown by which it would be possible to make 
measurements of the Vph with a precision at least 0.1 ms–1. 
As of yet, the improved optical method for measurements 
of both the Vph and Vg described in (Kolosovskii et al., 
1998) allows one to measure the Vph with an accuracy ~ 2 
m/s. It may be possible to develop experimental technique 
for measurement of the derivative dVph/dkh (and/or 
dVph/dωh) together with the Vph, in order to improve the 
measurement accuracy for weakly dispersive waves and 
to experimentally measure the non-dispersive ZTW-
waves. It is noted that calculation accuracy of the Vph in 
this work is about 10–3 m/s.  
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Fig.  5. The first type of dispersive RTW9-waves for the structures Bi12SiO20/Bi12GeO20 (thin lines) and 
Bi12GeO20/Bi12SiO20 (thick lines): a) for the free surface; b) for the metallized surface. The Vph extreme points 
represent the non-dispersive ZTW9-waves. 
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Fig. 6. The CEMCs K2 (%) for the structures 
layer/substrate: Bi12SiO20/Bi12GeO20 (thick line) and 
Bi12GeO20/Bi12SiO20 (thin line). 
 
The coefficient of the electromechanical coupling 
(CEMC) shown in figure 6 was calculated for the lowest-
order modes of dispersive RTW9-waves with the 
following well-known formula: 

Rf

RmRf

V
VV

K
−

= 22     (33) 

where VRf and VRm are the RTW9 phase velocities for the 
free and metallized surfaces, respectively. The CEMC K2 
is shown in figure 6 for both studied layered systems. For 
the structure Bi12SiO20/Bi12GeO20, the CEMC K2 starts 
with the K2 for the Bi12GeO20 single crystal at kh = 0 and 
approaches the K2 for the Bi12SiO20 single crystal at kh → 
∞. It is noted that in the kh-range between ~ 3.3 and ~ 50, 
the CEMC K2(Bi12SiO20/Bi12GeO20) is slightly larger than 
the K2(Bi12SiO20) ~ 0.016558 with a maximum value at kh 
~ 5. On the other hand, for the structure 
Bi12GeO20/Bi12SiO20, the CEMC K2 starts with the 
K2(Bi12SiO20) at kh = 0 and approaches the K2(Bi12GeO20) 
at kh → ∞. It is also noted that in the same kh-range, the 
CEMC K2(Bi12GeO20/Bi12SiO20) is slightly smaller than 
the K2(Bi12GeO20) ~ 0.013742 with a minimum value at 
approximately the same kh ~ 5. Therefore, using a hard 
piezoelectric layer on a softer piezoelectric substrate can 
result in increasing the CEMC K2. In addition to the first 
type of dispersive RTW9-waves representing a single 
lowest-order mode, modes of the second type of RTW9-
waves can exist in layered systems. They can exist if the 
speed Vt for a substrate is higher than that for a layer. This 
existence condition is full-filled for the structure 
Bi12SiO20/Bi12GeO20, but not for the structure 
Bi12GeO20/Bi12SiO20. The velocities Vph(kh) for seven 
modes of the RTW9 second type are shown in figure 7a. 
It is clearly seen in the figure that the first mode starts at 
kh0 ~ 43.2, but not at kh0 = 0. It was found that each next 
mode starts at khµ ~ kh0 + 73µ, where µ is an integer 
number, µ = 1, 2, 3, … . In addition, it was verified that 
the neighbour khµ are equidistant from each other on the 
kh-scale. Figure 7b shows the BCD9 behaviour in the Vph-

range between the speeds Vt for the Bi12SiO20-layer and 
the Bi12GeO20-substrate for the RTW9 second type. It is 
clearly seen in figure 7b that the surface metallization 
does not change the Vph that was verified at kh = 500 for 
the seven modes. 
 
OTHER POSSIBILITIES FOR WAVE EXISTENCE 
 
Ivanov and Kessenikh (1987) have assumed that in 
layered systems, consisting of a hard layer on a softer 
substrate both being the so-called transversely isotropic 
materials, Rayleigh-polarized dispersive waves such as 
slow surface waves can exist. These waves have a single 
mode starting with zero Vph(kh > 0) and approaching 
some non-dispersive velocity at kh → + ∞ that they called 
Stoneley wave (SW). They have schematically shown that 
such slow surface mode could exist in the layered systems 
with Vt

L > Vt
S > VR2

S > VR2
L > VSt, where VSt represents the 

speed of the interfacial SW-wave, and Vt and VR2 are the 
speeds of the corresponding bulk transverse and surface 
RTW2 waves, respectively. However, it is thought that 
one of general features of a Stoneley wave is that it is 
faster than the slowest Rayleigh wave associated with the 
separated half-spaces (Destrade and Fu, 2006). Therefore, 
their representation of a dispersion branch originating 
from zero Vph(kh > 0) is a misconception. Hence, the 
problem on slow surface waves with the in-plane 
polarization is open concerning existence possibilities and 
specific conditions. The layered system 
Bi12GeO20/Bi12SiO20 studied in this paper possesses the 
following Vt

L > Vt
S > VR3

L > VR3
S, where VR3 is the surface 

RTW3-waves. Thus, STW-waves were not found in [110] 
direction. It is noted that such Rayleigh-polarized slow 
surface waves can be used for filter and sensor 
applications. For instance, there are Capacitive 
Micromachined Ultrasonic Transducers (CMUTs) of 
microelectromechanical system (MEMS) structures in 
integrated circuit (IC) technology (Yaralioglu et al., 
2001). Generally, the CMUTs are based on the Rayleigh-
polarized Lamb waves (flexural plate mode) and could be 
also manufactured on the Love-wave polarized slow 
surface Zakharenko waves (SSZWs) recently introduced 
in (Zakharenko, 2005b).  
 
Also, note that the other possibility of wave existence in 
addition to dispersive RTW-waves is the existence of 
non-dispersive Zakharenko type waves in different 
layered structures. However, the non-dispersive ZTW-
waves were introduced as dispersive waves in all papers 
concerning investigations of dispersive waves. In 
addition, there are works in which there are attempts to 
represent results concerning dispersive waves with a very 
weak dependence Vph(kh) as non-dispersive waves, for 
example (Cherednik and Dvoesherstov, 2003; 
Dvoesherstov et al., 2003). That is somewhat incorrect 
from the view point shown in this paper. It is noted that if 
one will draw phase velocities of dispersive electro-
magnetic (EMW) and acoustic (AW) waves on the same 
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scale, one will find that the AWs become non-dispersive 
compared with the dispersive EM-waves, because the 
EM-waves are characterized by the Vph being five orders 
higher than that of the AWs. It is also noted that the AW 
highest speed is ~ 20000 ms–1 for Diamond and some 
non-cubic crystals (Zakharenko, 2005b). 
 
It was also assumed that there is an existence possibility 
to find Rayleigh-polarized supersonic surface waves in 
both monocrystals and layered systems. The Vph of such 
supersonic surface waves will be higher than the speed Vt. 
The supersonic surface waves could exist in monocrystals 
with a great C2 accounting possible effects: piezoelectric, 
piezomagnetic, etc. Some possible effects are shown in 
(Aboudi, 2000; Bednarcyk, 2002). The values of C2 
calculated in Section 3 for the studied monocrystals are 
not great. However, the coefficients A0 and B0 are 
relatively the same slightly above the corresponding 
speeds Vl up to 4000 m/s that is seen from figure 2b. The 
absolute values of the KDl and KDt are one order smaller 
than that of the A0 and B0 shown in figure 2a. It is noted 
that the coefficients A, B, and C in Eq. (5) should be all 
positive, in order to give two complex/imaginary roots 
plus one negative real root of the third order polynomial 
in (4) for surface waves. However, for surface waves, it is 
possible to have such the polynomial roots for Abs(A) ~ 
Abs(B) ~ Abs(C) with the coefficient A or B being 
negative. It is difficult to find such crystals because the 
KDt is negative for Vph > Vt giving negative B. Therefore, a 
computer program is given in the Appendix. Indeed, it is 
possible to treat crystals accounting other suitable effects 
in addition to piezoelectric/piezomagnetic effect. For 
instance, if the A, B, and C in Eq. (5) give the following 
polynomial P3 = x3 + 0.5x2 – 0.1x + 0.01, the 
corresponding two complex and one negative real root 
solving the equation P3 = 0 will be as follows: {– 0.6712; 
0.0856 – I0.0870; 0.0856 + I0.0870}. That results in 
appearance of four complex and two imaginary roots for 
the sixth order polynomial in Eq. (4) with m = n3

2, three 
of which with negative imaginary part are suitable for 

surface wave existence: {– I0.8193; 0.3222 – I0.1350; – 
0.3222 – I0.1350} with I = (– 1)1/2. Indeed, such situation 
is possible showing instability of some piezoelectric 
(piezomagnetic, etc.) crystals about the velocity Vl. That 
can happen in a very narrow Vph-range with a very small 
C in Eq. (4). For example, the following polynomial P3 = 
x3 + x2 – 0.01x + 0.0001 has its roots solving equation P3 
= 0: {– 1.009999; 0.0045 – I0.0086; 0.0045 + I0.0086}. 
That gives the following suitable roots of the sixth order 
polynomial {– I1.0050; 0.0865 – I0.0498; – 0.0865 – 
I0.0498} for SAW existence.  
 
Finally, it is noted that modes of dispersive leaky Sezawa 
type waves with the in-plane polarization can exist for Vph 
> Vt looking like corresponding continuations of the 
modes of dispersive RTW9 second type shown in figure 
7a. Solutions for such ultrasonic leaky waves were not 
found with Vph > Vt by evaluating the BCD9 sign running 
up to the speed Vl, at which the complex BCD9 becomes 
zero. Probably, they are found above the speed Vt when 
minima of Abs (BCD9) are treated instead of monitoring 
changes in sign of the corresponding BCD9 part, because 
it is thought that the latter is preferable for finding SAWs.  
 
PURE RTW9-WAVES IN 200-x2-ROTATED 
DIRECTION 
 
This Section studies pure RTW9-wave propagation in 
layered systems, consisting of cubic crystals Bi12SiO20 
and Bi12GeO20 accounting the piezoelectric effect. The 
waves propagate in the so-called work coordinate system 
obtained from [110] direction by 200-rotation around the 
x2-axis in figure 1 for both materials. In this propagation 
direction there are the following non-zero material 
constants: the elastic constants C11, C33, C13, C55, C15 with 
negative C35, the piezoelectric constants e13, e31, e33, e15, 
e35 with negative e11. They correspond to the complicated 
case of monoclinic crystals. The dielectric constants do 
not changed, ε11 = ε33 with ε13 = 0. Therefore, the theory 
developed in the second and third Sections is not suitable 
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Fig. 7. For the structure Bi12SiO20/Bi12GeO20: (a) the seven modes of dispersive RTW9 second type; and (b) the 
corresponding BCD9 behavior at the layer thickness kh = 500 for the free (thick line) and metallized (thin line) 
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here and there is only numerical analysis as a studying 
instrument. Figure 8a shows existence of the RTW9 first 
type for two different electrical boundary conditions: the 
free and metallized surface. The boundary conditions 
allow evaluation of the CEMC K2 (%) shown in Figure 
8b. It is clearly seen in the Figure that the CEMC is not 
larger than 1.5% for both studied structures: 
Bi12SiO20/Bi12GeO20 and the reverse configuration. 
Indeed, the CEMC starts at its value for the corresponding 
substrate at kh → 0 and approaches its value for the 
corresponding layer at kh → ∞ in the both cases. It is 
clearly seen in figure 8a that the first type of dispersive 
RTW9-waves possesses one non-dispersive Zakharenko 
type wave (ZTW9) at kh ~ 1.39 to 1.40 for the free 
surface and two for the metallized surface at kh ~ 0.13 to 
0.15 and at kh ~ 1.15 to 1.18. The insertion in Figure 8b 
shows the first non-dispersive ZTW9-wave at small kh for 
the shorted case.  
 
The dispersion relations for the structures 
Bi12SiO20/Bi12GeO20 and Bi12GeO20/Bi12SiO20 look like 
mirror reflections of each other. However, that is not 
completely true for both electrical boundary conditions. 
For instance, there is kh-position of the non-dispersive 
ZTW9-wave at kh ~ 1.39 for the structure 
Bi12SiO20/Bi12GeO20 and at kh ~ 1.40 for the structure 
Bi12GeO20/Bi12SiO20 that shows small asymmetry of the 
systems. A small asymmetry there is also for the shorted 
case. It is noted that calculation accuracy for finding the 
Vph was possible to set at 1µm/sec. However, it is thought 
that it is necessary to take a trustable Vph-accuracy about 
1mm/sec. Therefore, it is possible to trust that the 
presence of the non-dispersive ZTW9-wave in both 
structures at small kh ~ 0.13 to 0.15 shown in the insertion 
is true. It is obvious that the existence of the non-
dispersive ZTW9-waves at the small kh for the shorted 
case is caused by only piezoelectric properties, because 
they do not exist when the surface is free of metallization. 
On the other hand, the presence of the non-dispersive 
ZTW9-waves at larger kh ~ 1.0 to 1.5 for both the cases is 
caused by both the elastic and piezoelectric material 

properties. It is thought that here the elastic properties 
play a major role. “Shortage” of the free surface results in 
significant change in the kh-position of the corresponding 
non-dispersive ZTW9-wave, namely there is a shift to 
smaller values of kh showing the piezoelectricity 
influence. Also, it is obvious that the presence of the non-
dispersive ZTW9-waves broadens the Vph-existence range 
of the dispersive RTW9-waves. Indeed, the Vph-range for 
the RTW9-waves’ localization is about three times greater 
than the initially given Vph-difference of VRTW3(Bi12GeO20) 
= 1734.674 m/s from VRTW3(Bi12SiO20) = 1733.631 m/s 
(see the third column in Table 3). The RTW3 phase 
velocities with the metallized surface are as follows: 
VRTW3m(Bi12GeO20) = 1723.997 m/s and VRTW3m(Bi12SiO20) 
= 1720.775 m/s. 
 
According to table 3, the RTW9 second type could exist 
in the layered system, consisting of the Bi12GeO20-layer 
on the Bi12SiO20-substrate, because for the slow 
transverse waves there is VST(Bi12SiO20) > VST(Bi12GeO20) 
representing the condition for the wave existence. The 
condition is true studying wave propagation in isotropic 
media as well as in many suitable propagation directions 
in anisotropic and piezoelectric materials. However, the 
existence of RTW9 second type does not obey the 
condition in the propagation direction studied in this 
Section. The waves exist in the reverse configuration, 
because it is necessary to treat the so-called velocity 
equivalent Vph0 listed in the last column of table 3. The 
velocity Vph0 corresponds to the case when imaginary part 
of one root with the smallest imaginary part disappears. 
That occurs for Vph0(Bi12GeO20) = 1829.135307 m/s 
giving m3 = 0.217658 – I5.65406E–06 and Vph0(Bi12SiO20) 
= 1825.255744 m/s with m3 = 0.220269 – I1.81874E–05, 
where I = (– 1)1/2. Therefore, the existence condition of 
the RTW9 second type is Vph0(Bi12GeO20) > 
Vph0(Bi12SiO20) instead of VST(Bi12SiO20) > 
VST(Bi12GeO20). That is an additional difficulty for finding 
the RTW9 second type. Several modes of the dispersive 
RTW9 second type are shown in figure 9 within relatively 
great kh-range: 0 < kh < 500. The first mode begins at 
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quite great values of kh ~ 43.5. Each next mode beginning 
looks like to be equidistant from the previous with the kh-
step ~ 72 to 74. Figure 9b shows the sinusoidal behavior 
of both the real and imaginary parts of the complex 
BCD9. 
 
It was found that both the boundary condition 
determinants BCD3 and BCD9 do not equal to zero at the 
corresponding bulk wave speeds VST listed in table 3. At 
the speed VST there is the following: one corresponding 
positive real root in addition to two complex roots with 
negative imaginary part changes its sign. It is noted that 
the velocity Vph0 is a common feature that appears not 
only studying pure RTW9-waves, but also studying pure 
Love type waves (LTWs) with the anisotropy factor αf = 
(C44C66 – C46

2)1/2/C44 (Lardat et al., 1971; Zakharenko, 
2005b). The LTW velocity equivalent β should be lower 
than the speed VFT of the corresponding shear (fast 

transverse) bulk wave, ( ) 2/1
66 / ρCVFT = , due to the 

condition C66C44 > C46
2 requiring for energy conservation 

(Lardat et al., 1971). That may also be true for RTW9-
waves giving Vph0 < VST. Here there is C46 ≠ 0 for the 200-
x2-rotation from [110] direction. It is noted that there are 
the following waves: VFT(Bi12SiO20) = 2274.364 m/s and 
VFT(Bi12GeO20) = 2255.092 m/s giving higher Vph of Love 
type waves compared with VST listed in Table 3 for 
RTW3-waves. The studied propagation direction is one of 
possible cuts using the x2-rotation from ~ 190 up to ~ 300 
with the condition VL

ST > VS
ST > VS

RTW3 > VL
RTW3. 

 
Solutions above the speed VST were also found. It was 
found that the complex BCD3 equals to zero at Vph1 ~ 
1963.492 m/s studying wave existence in the monocrystal 
of Bi12GeO20. That happens when the negative real root of 
three roots {m3

(1) = – 0.644149 – I1.11408; m3
(2) = 

0.09105 – I0.818141; m3
(3) = – 0.0490123} gives all zero 

components (U1
(3), U3

(3), φ(3)). It is noted that the zero 
components give the following weight factors {F(1); F(2); 
F(3)} = {0; 0; F(3)} or {0; 0; 0} in the complete 
characteristics 

( )[ ]∑
=

−+=
3,2,1

3
)(

311
)(
4,3,1

)(
4,3,1 jexp

N

NNN txmxmkUFU ω  with 

U4
(N) = φ(N) manifesting that such waves cannot exist. 

However, if suitable weight factors {F(1); F(2); 0} will be 
found that is an additional investigation problem, it is 
possible to study two-partial waves instead of three-
partial waves concerning wave propagation in 
monocrystals. As soon as the BCD3 equals to zero at Vph1, 
the complex BCD9 for structures using any layer on the 
substrate, as well as all corresponding higher-order BCDs 
studying multi-layered structures, will be zero at the same 
Vph1 due to the zero components (U1

(3), U3
(3), φ(3)) for the 

substrate. The same there is for Bi12SiO20 and layered 
structures with the substrate of Bi12SiO20, where all zero 
components (U1

(3), U3
(3), φ(3)) are for the roots {m3

(1) = – 
0.700865 – I1.13238; m3

(2) = 0.105407 – I0.800113; m3
(3) 

= – 0.048674} at Vph1 ~ 1965.258 m/s. It is noted that the 
speeds VL of the longitudinal bulk wave for the 200-x2-
rotated direction are as follows: VL(Bi12SiO20) = 3359.358 
m/s and VL(Bi12GeO20) = 3337.419 m/s. However, the 
second pair of complex roots disappears at a velocity 
equivalent Vph2, which is lower than the speed VL. For 
example, there is Vph2(Bi12SiO20) ~ 3355.468 m/s. 
Probably, such the situation when the speeds VST and VL 
do not coincide with the corresponding velocity 
equivalents Vph0 and Vph2 is common. 
 
CONCLUSIONS 
 
In this theoretical work, the possible existence of 
supersonic surface waves with the Rayleigh-wave 
polarization is shown. For these waves, the phase velocity 
Vph could be found about the speed Vl depending on both 
the crystal anisotropy and the piezoelectric/piezomagnetic 
effect. The computer program is given in the Appendix, 
which can be used for finding the supersonic waves in 
addition to the RTW3 and RTW9-waves. Note that many 
crystals can possess both effects, according to Al’shits 
and Lyubimov (1990), as well as the other effects, see 
(Aboudi, 2000; Bednarcyk, 2002). That can significantly 
complicate calculations in numerical experiments. Also, 
both the longitudinal dynamic CEMC KDl(Vl) and the 
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Fig. 9. (a) Several modes of the RTW9 second type for the structure Bi12SiO20/Bi12GeO20; (b) the corresponding 
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transverse dynamic CEMC KDt(Vt5) were introduced and 
discussed. Possible existence of slow surface waves with 
the Rayleigh-wave polarization was also discussed. The 
introduced calculations of the RTW9 lowest-order mode 
in the layered system, consisting of the materials 
Bi12SiO20 and Bi12GeO20, have shown the existence of the 
non-dispersive Zakharenko type waves (ZTW9) in the 
studied layered systems with both the free surface and 
surface metallization. It was found that the surface 
metallization can significantly shift the appearance of the 
non-dispersive ZTW9-waves to smaller values of kh. It 
was also found that at kh ~ 5 – 6 the CEMC K2 for the 
structure Bi12GeO20/Bi12SiO20 is slightly larger than that 
for the Bi12GeO20 single crystal. The non-dispersive 
ZTW9-waves divide the RTW9 lowest-order mode into 
sub-modes with different dispersions, Vph > Vg or Vph < 
Vg. This lowest-order mode of dispersive RTW9-waves is 
confined in the narrow Vph-range between the non-
dispersive RTW3-wave for the Bi12SiO20-layer and the 
wave for the Bi12GeO20-substrate. That can be convenient 
for some technical devices, for which a weak dependence 
of the Vph on the layer thickness kh is required. For 
comparison, the 200-x2-rotated propagation direction from 
[110] direction was also studied concerning the pure 
RTW9-waves. Here, it was found that existence of RTW9 
second type does not depend on the speeds Vt of the 
corresponding bulk transverse waves in both materials.  
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Appendix. The Maple program for finding the phase 
velocity of the RTW3 and RTW9-waves: 
restart: with(linalg): ms:=array(1..3,1..3): 
ms1:=array(1..3,1..3): u1s:=array(1..6): u3s:=array(1..6): 
u4s:=array(1..6): m3s:=array(1..6): c33s:=12.962: 
c13s:=2.985: c55s:=2.451: c11s:=c55s+(c13s+c33s)/2: 
c66s:=4.9885: ros:=9.07: es:=1.122: dps:=3.63735: 
dp0:=0.08854: fdz:=fopen("RTW9_1.txt",WRITE):  
c2s:=(c11s*c33s-c55s*(c11s+c33s)+c55s^2-
(c13s+c55s)^2)/(c33s*c55s); k0s:=es*es/(c55s*dps): 
Vt5s:=1000*sqrt(10*c55s/ros); 
Vt6s:=1000*sqrt(10*c66s/ros); 
Vls:=1000*sqrt(10*c11s/ros); 
Vts_new:=Vt5s*sqrt(1+k0s); mg:=array(1..3,1..3): 
mg1:=array(1..3,1..3): u1g:=array(1..6): u3g:=array(1..6): 
u4g:=array(1..6): m3g:=array(1..6): c33g:=12.852: 
c13g:=2.934: c55g:=2.562: c11g:=c55g+(c13g+c33g)/2: 
dp0:=0.08854: c2g:=(c11g*c33g-
c55g*(c11g+c33g)+c55g^2-
(c13g+c55g)^2)/(c33g*c55g); rog:=9.2: dpg:=3.336: 
eg:=0.983: k0g:=eg*eg/(c55g*dpg): 
Vt5g:=1000*sqrt(10*c55g/rog); 
Vlg:=1000*sqrt(10*c11g/rog); 
Vtg_new:=Vt5g*sqrt(1+k0g); st66:=array(1..6,1..6); 

rw9:=array(1..9,1..9): for kh from 0 by 0.1 to 10 do  
Drw9:=0: for i from 1675 by 0.1 to 1685 do  Vph:=i: 
At2s:=1-(Vph/Vt5s)^2: Al2s:=1-(Vph/Vls)^2: 
B0s:=(c11s/c33s)*At2s*Al2s: 
A0s:=(c11s/c33s)*Al2s+At2s+c2s: 
kdts:=k0s*(4*c55s*At2s-4*c13s-3*c55s)/c33s: 
kdls:=k0s*c11s*Al2s/c33s: As:=A0s+1+4*k0s: 
Bs:=A0s+B0s+kdts: Cs:=B0s+kdls:  
Pls:=ns^3+As*ns^2+Bs*ns+Cs: sols:=[solve(Pls,ns)]:  
At2g:=1-(Vph/Vt5g)^2: Al2g:=1-(Vph/Vlg)^2: 
B0g:=(c11g/c33g)*At2g*Al2g; 
A0g:=(c11g/c33g)*Al2g+At2g+c2g; 
kdtg:=k0g*(4*c55g*At2g-4*c13g-3*c55g)/c33g; 
kdlg:=k0g*c11g*Al2g/c33g; Ag:=A0g+1+4*k0g: 
Bg:=A0g+B0g+kdtg: Cg:=B0g+kdlg: 
Plg:=ng^3+Ag*ng^2+Bg*ng+Cg: solg:=[solve(Plg,ng)]:   
for j from 1 by 1 to 3 do   m3s[j]:=-sqrt(sols[j]): m3g[j]:=-
sqrt(solg[j]):  m3s[3+j]:=sqrt(sols[j]): 
m3g[3+j]:=sqrt(solg[j]):   u1s[j]:=-
(es^2/dps)*(1/(1+m3s[j]^2))-(c33s*m3s[j]^2+c55s*At2s): 
u3s[j]:=(c13s+c55s)*m3s[j]+(2*es^2/dps)*(m3s[j]/(1+m3
s[j]^2)):  
u4s[j]:=(2*es/dps)*(m3s[j]/(1+m3s[j]^2))*u1s[j]+(es/dps)
*(1/(1+m3s[j]^2))*u3s[j]:  
u1s[3+j]:=-(es^2/dps)*(1/(1+m3s[3+j]^2))-
(c33s*m3s[3+j]^2+c55s*At2s): 
u3s[3+j]:=(c13s+c55s)*m3s[3+j]+(2*es^2/dps)*(m3s[3+j
]/(1+m3s[3+j]^2)):  
u4s[3+j]:=(2*es/dps)*(m3s[3+j]/(1+m3s[3+j]^2))*u1s[3+
j]+(es/dps)*(1/(1+m3s[3+j]^2))*u3s[3+j]:   
u1g[j]:=-(eg^2/dpg)*(1/(1+m3g[j]^2))-
(c33g*m3g[j]^2+c55g*At2g): 
u3g[j]:=(c13g+c55g)*m3g[j]+(2*eg^2/dpg)*(m3g[j]/(1+
m3g[j]^2)):  
u4g[j]:=(2*eg/dpg)*(m3g[j]/(1+m3g[j]^2))*u1g[j]+(eg/dp
g)*(1/(1+m3g[j]^2))*u3g[j]:   
u1g[3+j]:=-(eg^2/dpg)*(1/(1+m3g[3+j]^2))-
(c33g*m3g[3+j]^2+c55g*At2g): 
u3g[3+j]:=(c13g+c55g)*m3g[3+j]+(2*eg^2/dpg)*(m3g[3
+j]/(1+m3g[3+j]^2)):  
u4g[3+j]:=(2*eg/dpg)*(m3g[3+j]/(1+m3g[3+j]^2))*u1g[3
+j]+(eg/dpg)*(1/(1+m3g[3+j]^2))*u3g[3+j]:    
ms[1,j]:=c55s*(m3s[j]*u1s[j]+u3s[j])+es*u4s[j]:  
ms[2,j]:=c13s*u1s[j]+m3s[j]*c33s*u3s[j]:  
ms[3,j]:=es*u1s[j]-(dps*m3s[j]-dp0*I)*u4s[j]: 
ms1[1,j]:=c55s*(m3s[3+j]*u1s[3+j]+u3s[3+j])+es*u4s[3
+j]:  
ms1[2,j]:=c13s*u1s[3+j]+m3s[3+j]*c33s*u3s[3+j]:ms1[3
,j]:=es*u1s[3+j]-(dps*m3s[3+j]-dp0*I)*u4s[3+j]: 
mg[1,j]:=c55g*(m3g[j]*u1g[j]+u3g[j])+eg*u4g[j]: 
mg[2,j]:=c13g*u1g[j]+m3g[j]*c33g*u3g[j]:  
mg[3,j]:=eg*u1g[j]-(dpg*m3g[j]-dp0*I)*u4g[j]: 
mg1[1,j]:=c55g*(m3g[3+j]*u1g[3+j]+u3g[3+j])+eg*u4g[
3+j]: 
mg1[2,j]:=c13g*u1g[3+j]+m3g[3+j]*c33g*u3g[3+j]:mg1
[3,j]:=eg*u1g[3+j]-(dpg*m3g[3+j]-dp0*I)*u4g[3+j]: 
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rw9[1,j]:=u1s[j]: rw9[1,3+j]:=-u1g[j]: rw9[1,6+j]:=-
u1g[3+j]: rw9[2,j]:=u3s[j]: rw9[2,3+j]:=-u3g[j]:  
rw9[2,6+j]:=-u3g[3+j]: rw9[3,j]:=u4s[j]: rw9[3,3+j]:=-
u4g[j]: rw9[3,6+j]:=-u4g[3+j]: rw9[4,j]:=ms[1,j]: 
rw9[4,3+j]:=-mg[1,j]: rw9[4,6+j]:=-mg1[1,j]: 
rw9[5,j]:=ms[2,j]: rw9[5,3+j]:=-mg[2,j]: rw9[5,6+j]:=-
mg1[2,j]: rw9[6,j]:=ms[3,j]-dp0*I*u4s[j]: rw9[6,3+j]:=-
(mg[3,j]-dp0*I*u4g[j]): rw9[6,6+j]:=-(mg1[3,j]-
dp0*I*u4g[3+j]): rw9[7,j]:=0: rw9[8,j]:=0: rw9[9,j]:=0: 
rw9[7,3+j]:=mg[1,j]*exp(I*kh*m3g[j]): 
rw9[7,6+j]:=mg1[1,j]*exp(I*kh*m3g[3+j]): 
rw9[8,3+j]:=mg[2,j]*exp(I*kh*m3g[j]): 
rw9[8,6+j]:=mg1[2,j]*exp(I*kh*m3g[3+j]): 
rw9[9,3+j]:=mg[3,j]*exp(I*kh*m3g[j]): 
rw9[9,6+j]:=mg1[3,j]*exp(I*kh*m3g[3+j]): end do: 
Ds:=det(ms): Dg:=det(mg): 
ADs:=sqrt(Re(Ds)^2+Im(Ds)^2): 
ADg:=sqrt(Re(Dg)^2+Im(Dg)^2): Drw91:=Drw9: 
Drw9:=det(rw9): 
ADrw9:=sqrt(Re(Drw9)^2+Im(Drw9)^2):  
if (Drw9*Drw91<0) then  fprintf(fdz,"kh %g  Vph %g  
Re(Ds) %g  Im(Ds) %g  ADs %g    Re(Dg) %g  Im(Dg) 
%g  ADg %g   Re(Drw9) %g  Im(Drw9) %g  ADrw9 
%g",kh,Vph,Re(Ds),Im(Ds),ADs,Re(Dg),Im(Dg),ADg, 
Re(Drw9),Im(Drw9),ADrw9):   end if: end do: end do: 
fclose(fdz): 
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