AN INCLUSION THEOREM

Giuseppe Rao

Department of Mathematics, University of Palermo, Via Archirafi 34, 90123 Palermo, Italy

ABSTRACT

In this paper using a minimax theorem of Ricceri , we prove a result ensuring the existence of a point $x^* \in X$ such that

$$0 \in \bigcap_{\lambda \in I} F(x^*, \lambda),$$

where X is a topological space, I is a real interval and F is a multifunction from $X \times I$ to a normed space.

Keywords: Multifunctions, inclusion, minimax.

2000 Mathematics Classification: 47H04, 47J05

The aim of this paper is to establish the following inclusion theorem:

THEOREM 1. – Let X be a topological space, Y a starlike set with respect to 0 in a normed space $(E, \|\Box\|), I \subseteq \Box$ an interval, $F : X \times I \rightarrow 2^{Y}$ a multifunction whose values are proximinal in Y. Assume that:

- (a) for each $\lambda \in I$, the multifunction $F(.,\lambda)$ is open in Y and the function dist $(0, F(.,\lambda))$ is lower semicontinuous;
- (b) for each $x \in X$, the function $\lambda \to dist(0, F(x, \lambda))$ is continuous and quasiconcave in I;
- (c) There exist $\rho > 0$ and $\lambda_0 \in I$ such that the set $\{x \in X : dist(0, F(x, \lambda_0)) \le \rho\}$

 $\int x \in X \cdot u(s)(0, I(x, x_0)) =$

is compact; (d) one has

$$0 \in \bigcap_{\lambda \in I} \bigcup_{x \in X} F(x, \lambda)$$

Under such assumption, there exists $x^* \in X$ such that

$$0 \in \bigcap_{\lambda \in I} F(x^*, \lambda).$$

Before giving the proof of theorem, let us recall some definitions, keeping the notations of Theorem 1.

The set Y is said to be star-like with respect to 0 if, for each $y \in Y$, the closed segment joining 0 and y is contained in Y. A multifunction $F: X \to 2^Y$ is said to be open in Y if, for each open set $A \subseteq X$ the set $F(A) := \bigcup_{x \in A} F(x)$ is open in Y. A set $B \subseteq Y$ is said to be proximinal in Y if, for each $y \in Y$, there exists $z \in B$ such that ||y - z|| = dist(y, B)where $dist(y, B) = \inf_{v \in B} ||y - v||$ A function $\psi: I \to \Box$ is said to be quasi-concave if, for each $r \in \Box$, the set $\{\lambda \in I : \psi(\lambda) > r\}$ is an interval.

Let us also recall a minimax theorem by Ricceri which is our main tool in proving Theorem 1.

Theorem 2 (Ricceri, 2001), Theorem 1 and Remark 1). – Let X,I be as in Theorem 1, and let $f: X \times I \rightarrow \Box$ be a function satisfying the following conditions:

- (i) for every $x \in X$, the function f(x,.) is quasiconcave and continuous;
- (ii) for every $\lambda \in I$, the function $f(., \lambda)$ is lower semicontinuous and each of its local minima is a global minimum;
- (iii) there exist $\rho > \sup_{I} \inf_{X} f$ and $\lambda_{0} \in I$ such that the set $\{x \in X : f(x, \lambda_{0}) \le \rho\}$ is compact.

Then, one has

 $\sup_{\lambda \in I} \inf_{x \in X} f(x, \lambda) = \inf_{x \in X} \sup_{\lambda \in I} f(x, \lambda)$

^{*}Corresponding author email:rao@math.unipa.it

Proof of Theorem 1. Fix $\lambda \in I$. Let us prove that the local minima of the function $dist(0, F(., \lambda))$ are global minima. To this end, let us fix $x_0 \in X$ so that $dist(0, F(x_0, \lambda)) > 0$.

Since $F(x_0, \lambda)$ is proximinal in Y and $0 \in Y$, there

exists $z_0 \in F(x_0, \lambda)$ such that

$$\|z_0\| = dist(0, F(x_0, \lambda)).$$

Now, let $\Omega \subseteq X$ be any open neighbourhood of x_0 .

Since $F(\Omega, \lambda)$ is open in Y there is $r^* > 0$ such that $B(z_0, r^*) \bigcap Y \subseteq F(\Omega, \lambda),$

where $B(z_0, r^*) = \left\{ y \in E : ||y - z_0|| \le r^* \right\}.$ If we choose $\mu \in \left[0, \min\left\{1, \frac{r^*}{\|z_0\|}\right\}\right]$, then we clearly

have $(1-\mu)z_0 \in B(z_0, r^*)$ as well as $(1-\mu)z_0 \in Y$ since Y is star-like with respect to 0.Hence,

 $(1-\mu)z_0 \in F(\Omega, \lambda)$. From this, since

 $\|(1-\mu)z_0\| < \|z_0\|$, it follows that

 $dist(0, F(\Omega, \lambda)) < ||z_0||$. Consequently, there exists some $\hat{x} \in \Omega$ such that

 $dist(0, F(\hat{x}, \lambda) < dist(0, F(x_0, \lambda))$

and so x_0 is not local minimum for the function $dist(0.F(.,\lambda))$, which clearly proves our claim. Now, observe that from (d) it directly follows

 $\sup_{\lambda \in I} \inf_{x \in X} dist(0, F(x, \lambda)) = 0 .$

Then, taking (a),(b) and (c) into account, we see that the function $f: X \times I \rightarrow \Box$ defined by

 $f(x,\lambda) = dist(0, F(x,\lambda))$

satisfies all the assumptions of Theorem 2. Consequently, we have

 $\sup_{\lambda \in I} \inf_{x \in X} dist(0, F(x, \lambda)) = \inf_{x \in X} \sup_{\lambda \in I} dist(0, F(x, \lambda)),$ that is

$$\inf_{x \in X} \sup_{\lambda \in I} dist(0, F(x, \lambda)) = 0 .$$
 (1)

Finally, observe that, by (a), the function $\sup_{\lambda \in I} dist(0, F(., \lambda))$ is lower semicontinuous, while, by (c), it has a non-empty compact sublevel set. Consequently, the infimum in (1) is attained at some $x^* \in X$. Since each set $F(x, \lambda)$ is closed in Y (since it is proximinal in it), x^* clearly satisfy the conclusion.

REFERENCES

Ricceri, B. 2001. A further improvement of a minimax theorem of Borenshtein and Shul'man, J. Nonlinear Convex Anal. 2:279-283.