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ABSTRACT 
 
In order to create a multi-sample-multi-probe DNA microarray on a circular disk (CD), we have designed 
numerous equiforce spiral microchannels on it. Hydrodynamic DNA sample hybridizations occurred in these 
channels when the samples were delivered by centrifugal pumping. The main goal of the use of the equiforce 
microchannel is to ensure a constant liquid flow velocity as the sample is filled through an empty spiral channel. 
Nevertheless, the design of the equiforce spiral channel has not been reported. In this work, the mathematical 
equation of the spiral curve and its physical basis for the equiforce condition are reported for the first time, and 
the constant flow velocity has been proven by a detailed image analysis of the liquid front advancing inside the 
microchannel. The sensitivity tests of various design parameters on the flow velocity in the spiral channel were 
revealed in detail.  
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INTRODUCTION 
 
The microarray method has been widely used for many 
biotechnological applications, such as DNA-based 
pathogen detection (Campas and Katakis, 2004). We have 
developed a full microfluidic method in which no spotting 
is needed and multiple samples can be applied (Peng et 
al., 2007; Wang et al., 2008). In this method, both the 
microarray creation and its application to DNA 
hybridization are conducted by microfluidic operations on 
a circular disk (CD). The microfluidic microarray method 
has been applied for hybridization of complementary 
oligonucleotides (Peng et al., 2007) and PCR products 
(Wang et al., 2008). In these reports, after a line 
microarray is printed using radial channels (Fig. 1A), the 
test chip is assembled with a spiral channel plate (Fig. 
1B). When the assembly is spun, an along-channel 
component of the pseudo centrifugal force is developed 
along the spiral channel. This component force results in 
the liquid flow in the spiral channels, which intersect with 
the line microarray created in the previous step. Thus, we 
benefit from the use of centrifugal pumping for 
convenient DNA sample delivery and hydrodynamic 
hybridization inside the equiforce spiral microchannels to 
form a spot microarray. 
  
Since the centrifugal force tends to increase with the 
radius, the velocity of the sample solution will increase as 
it flows from the inlet reservoir near the centre to the 
outlet reservoir near the CD rim. This increasing flow 
velocity is undesirable because the residence time for 
hybridization becomes shorter and shorter as the liquid 
flows toward the outlet reservoir. In order to achieve 
uniform hybridization results, it is essential to ensure a 
constant flow velocity of DNA samples in the spiral 

channels, especially when the small sample volume (e.g. 
1 µl) employed is a significant portion of the total sample 
volume during channel filling. Therefore, we should 
design a special spiral channel (Fig. 2A), which maintains 
a constant along-channel component centrifugal force (C 
cosα) over the whole channel, regardless of the locations 
near the centre or the rim of the CD.  
 
THEORY 
On the rotating frame of reference of a spinning CD, the 
reaction force P that exerts perpendicularly from the 
channel wall to a short column of liquid is balanced by 
the pseudo cross-channel centrifugal force component C 
sin � (Fig. 2B). However, there is no reaction force along 
the channel, and so a pseudo along-channel component of 
the centrifugal force C cos α causes the liquid to move 
along the spiral channel. When this along-channel force C 
cos α is balanced by the liquid resistance force R that 
includes the viscous drag force and the surface tension of 
the advancing liquid front, the flow attains a constant 
terminal velocity.  
 
Since C increases with the radius, as depicted by the 
increasing magnitude of the radial vectors in figure 2B, a 
constant terminal velocity of the liquid will not be 
attained. This would be the case if we used a simple spiral 
channel, such as the equiangular spiral in which the spiral 
curve makes a constant angle α with the radius. However, 
in our specially designed spiral, we have manipulated the 
angle α in order to maintain a constant value of the along-
channel force (i.e. equiforce) anywhere along the channel. 
We explain this equiforce concept using a gravity analogy 
in figure 3, in which G represents the gravitational force 
in one region, and G’ represents a higher force in another 
region (Fig. 3C). Figure 3A shows an increase of the 
along-slope gravitational force from G cos α to G’ cos α *Corresponding author email : paulli@sfu.ca 
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because G increases to G’. But if the angle α increases to 
α’ too (Fig. 3B), the along-slope force can be adjusted to 
equal its original value (i.e. G cos α = G’ cos α’).  
 
Therefore, the design of the spiral curve is to increase the 
angle α, or reduce cos α, to compensate for the increasing 
centrifugal force. In the case of a spinning CD, the along-
channel acceleration (aα) is given by 
 

αωα cos2ra =   (1) 
 
where α is the angular velocity, r  is the radius, and α is 
the angle that the spiral curve makes with the radius (see 
Fig. 2A). 
 
At the initial position of the spiral channel, r = r0 and α = 
α0, then we have 
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To maintain a constant along-channel force and 
acceleration over the entire spiral channel, we should 
have 
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From Fig. 2A, we have the following equation to describe 
an infinitesimal segment of the equiforce spiral curve, 
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where the center of the CD is also the center of the polar 
coordinates, and β  and r are the angle and radius of the 
polar coordinates, respectively. 
 
After integration of equation 4 (see appendix A), we 
obtain a function that describes the equiforce spiral curve, 
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MATERIALS AND METHODS 
 
The microchannel plates and glass test chip 
The design and fabrication of the channel plates have 
been previously reported (Peng et al., 2007). Briefly, the 
channel pattern is created by Visual Basic. This pattern 
was used to fabricate the polydimethylsiloxane (PDMS) 

channel plate of 92 mm in diameter. The channel width 
and channel depth were 60 µm and 20 µm, respectively. 
The inlet reservoirs were designed in a staggered fashion 
to make sure the reservoirs are sufficiently far apart for 
efficient sample application.  The glass test chip were 
obtained from Precision Glass & Optics. They were 4” in 
diameter with a 0.6” centre hole.  
 
Flow visualization in the spiral channels 
The liquid flow in the spiral channel was visualized using 
a solution containing a blue food dye (Scott-Bathgate, 
Vancouver, BC). The microchannels were illuminated by 
a stroboscope light (Monarch, Nova-Strobe DA Plus 115) 
at the same frequency as the rotation speed which was 
2500 rpm. The position of the liquid front was recorded 
by a video camera (SONY DCR-TRV260) equipped with 
a 4X lens.  
 
To assist in the position measurement of the advancing 
liquid front, numerous radial lines were drawn on a piece 
of paper that was put under the glass chip. Each image 
frame of the video clip was studied and measured to 
determine the times and positions of the liquid fronts. 
Therefore, the flow velocities of the advancing liquid 
front meniscus during the filling of the spiral 
microchannels were determined. 
 
RESULTS AND DISCUSSION 
 
The liquid movement in the spiral channels was first 
examined using the blue-dyed solutions. As shown in 
figure 4A, it was observed that the solution left the inlet 
solution reservoir and flowed through the spiral channel. 
Figure 4B shows various dimensions and forces near the 
inlet reservoir of the spiral channel. 
 
The information of distance and transit time of the 
advancing liquid front were determined in each spiral 
channel and displayed graphically. Figure 5A shows the 
overlay of 96 traces of the transit time plotted against the 
liquid front position. The liquid front velocity is given by 
the reciprocal of the slope. In each trace, it is observed 
that the liquid front reaches the constant slope (or 
constant velocity) after traveling for 50 mm, albeit the 
values are different in different channels, possibly due to 
different channel conditions. The slower initial liquid 
front velocity (or greater slope) was attributed to the 
surface tension barrier resistance that the liquid 
encountered when it entered the microchannel Moreover, 
it is seen that the constant velocities in all channels are 
within a range of 5 ± 1 mm/s. Note that the velocity in 
each spiral channel is constant within a much narrower 
range. 
 
To model the liquid flow speed in the spiral 
microchannel, a schematic diagram near the inlet 
reservoir of the channel has been shown in figure 4B. At 
the end of the short straight channel (L0), the channel 
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changes its direction (i.e. at an angle α0 to the radius) 
along the spiral channel. The liquid in the reservoir is 
shown to be continually filled into the empty spiral 
microchannel. In the modeling work, one usually uses the 
Navier-Stokes equation, which is based on conservation 
of momentum and is formulated by a balance of the body 
force (centrifugal force) and surface force (viscous drag 
force) to the liquid pressure field. The line force (surface 
tension effect) comes into play as a boundary condition. 
Nevertheless, under the condition of a constant body 
force anywhere inside the equiforce spiral channel, we 
simplify the modeling work by directly using just the 
force balance in a 1-dimensional approximation.  
 
In this simplified model, the body force (F) is considered 
as a linear accumulation of the constant centrifugal force 
of infinitesimal liquid elements within the spiral channel. 
Therefore, F increases with the column length L as 
follows.  

0αρXLaF =  (6) 

where ρ is the liquid density; X is the cross-section area; 
L is given by equation A8 (see appendix A). 
Using equation 2, we have 

LkrXLF 100
2 cos == αωρ  (7) 

where k1= ρXω2r0cosα0 (8) 
Similarly, the body force (F0) due to the liquid in the 
initial radial straight channel section is considered to a 
constant, and is given by 

010 LkF =  (9) 

Next, we consider the surface force (F2) which is also a 
linear accumulation of the viscous drag force of 
infinitesimal liquid elements. F2 which increases linearly 
as the contact area of the liquid column becomes 
increasingly larger is given by  

dy
duAF µ=2

     (10) 

where µ is the viscosity coefficient; du/dy is the velocity 
gradient across the channel width; A is the contact area of 
the liquid column layer, which increases linearly as the 
liquid filling length (L + L0).  
 
The velocity gradient du/dy is proportional to the 
maximum velocity (u = dL/dt) at the centre of the 
channel. In fact, it was the position of the centre of the 
liquid front that was measured as L in the experiments. 
Then we lump all constants into k2 to give 

  ( )
dt
dLLLkF 022 +=     (11) 

At the liquid front, the line force (S), which is the surface 
tension at the liquid front exists, is considered to be 
constant. For a constant liquid flow velocity, the forward 
driving forces (F0 and F) must be balanced by the 
backward forces (F2 and S) as follows 
F + F0  = F2  + S     (12) 
Combining equations 7, 11 and 12, we have 
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where b = S - F0      (14) 
 
For integration, equation 13 is transformed to give 
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where D is the integration constant. By using equation 14 
and lump all constants not associated with L into D’, we 
have a flow equation relating the transit time (t) and the 
filling column length (L): 
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The plot of transit time versus distance for one spiral 
channel is shown in Figure 5C. Using regression analysis, 
the data was fitted to equation 17 to give t = 0.136L + 
3.599 log (L – 0.476) + 0.272. The agreement (R = 
0.9996) between the experimental data (circles) and the 
fitted curve is excellent, thus verifying the theoretical 
model.  
 
Subsequently, various sensitivity tests were performed in 
order to determine the optimal conditions to reach a 
constant flow velocity even during the initial section of 
the spiral channel. For instance, when the S-F0 was 
decreased (down to 1/32 of the original value), the 
linearity of the curve became better (Fig. 6A), indicating 
that the constant flow velocity was attained over most 
parts of the spiral channel. In the case of modifying S, the 
flow velocity (as given by the reciprocal of the slope) did 
not change greatly, indicating that there was no sacrifice 
in the flow time.  
 
When the viscosity (µ) was reduced (down to 1/32 of the 
original value), the linearity of the curve also became 
better (Fig. 6B), indicating the achievement of constant 
flow velocity in most parts of the spiral channel. However, 
the flow velocities became increasingly higher, as evident 
from the reduction in slopes. This would require the 
reduction in the spinning speed of the CD in order to 
maintain the same flow velocity and reaction residence 
time. Furthermore, when the driving force F was 
increased, the linearity of the curve became better (Fig. 
6C), but the flow velocities became higher too. 
 
Based on these sensitivity tests, we identify some ways to 
expand the range of constant flow velocity. For instance, 
we can spin the CD faster or design a spiral with a larger 
α0. In both cases, a stronger centrifugal force can be 
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obtained to overcome the surface tension barrier. 
Nevertheless, this stronger centrifugal force generates a 
higher flow velocity, and so there is insufficient time for 
the hybridization reaction to complete for the DNA 
microarray work. The best way is to use a surfactant to 
decrease the surface tension barrier. This method does not 
result in any increase in the flow velocity (Fig. 6A), and 
the range of constant flow velocity can be expanded to 
nearly the whole channel.  
 
CONCLUSIONS 
 
Flow velocity in a spiral microchannel on CD was 
properly controlled to be constant based on the equiforce 
spiral formulation. In this case, the centrifugal force is 
equal at every location along the spiral microchannel. 
Various sensitivity tests have been performed on the 
simulated distance-time curves, leading to some useful 
design and operational parameters. This equiforce 
condition has resulted in effective hybridizations as 
reported in our previous work.  
 
ACKNOWLEDGEMENT 
 

We thank Natural Sciences and Engineering Research 
Council of Canada for a Discovery Grant. XY Peng 
thanks National Science Foundation of China. 
 
Appendix A: Mathematical derivation of the equiforce 
spiral curve 
Equation 4 has been given to describe an infinitesimal 
segment of the equiforce spiral curve, 

α
ααβ

cos
cos1tan

2−
==

dr
rd     (4) 

where the center of the CD is also the center of the polar 
coordinates, and β is the angle and r is the radius of the 
polar coordinates, see Fig 2. 
 

From equation 1 shown previously, we substitute k for 
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. Then we have  
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Combining equation A1 with equation 3, we have 
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Combining equation 4 and equation A1, we have 
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Separating the variables, and integrating with the limits 
from β0 to β, and from r0 to r as follows, 
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After integration, we have  
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After using equation A2 to replace k, we obtain a function 
that describes the equiforce spiral curve based on the 
polar coordinates r and β, 
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The value of β 0 in equation 5 is computed by numerical 
iteration (Ypma, 1995) using the known value of r0 and 
r1, and the condition that r = r1  leads to β = β0 + 2π. In 
our design, α0 is computed to be 1.4517 radians. 
 
To assist in the numerical iteration to compute α0, the 
following partial differential equation is obtained from 
equation 5 by differentiating it with respect to α0, 
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With a computed α0 we can plot the equiforce spiral curve 
using equation 5.  
 
In order to plot the spiral curve, we have to obtain the β 
value at each value of r, using numerical iteration. To 
assist in this operation, we use another partial differential 
equation obtained from equation 5 by differentiating it 
with respect to r, 
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In addition, the following equation allow us to calculate 
the length of liquid column, L, in the spiral microchannel. 
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With α0 = 1.4517 radians, r0 = 24 mm and r1= 42 mm, L 
is computed to be 208 mm. 
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A B 

 

Fig. 1. Schematics of the microfluidic microarray method. 
(A) Channel plate 1 consists of 24 radial microchannels 
for DNA probes to fill and to be immobilized as probe 
lines. (B) Channel plate 2 consists of 12 spiral 
microchannels in which DNA samples would flow and 
hybridize to the probe lines. Although these channel 
numbers are 12 or 14 for clarity, the actual number of 
channels fabricated on the PDMS chip are both 96. 
 

 

 

 

Fig. 2. (A) The design of the equiforce spiral channel 
depicted with the polar coordinates of r and β. The spiral 
curve starts at r0 and β0 at an angle of α0 that the spiral 
curve makes with the radius. The spiral curve ends at r1.  
An infinitesimal section of the curve is given on the top 
right inset, showing the angular relation between rdβ and 
dr. (B) The force field on a spinning CD. In a rotating 
frame of reference, the force relationship is depicted on 
the right. The reaction force from the channel wall (P) 
and the resistance force along the channel (R) are 
balanced by the pseudo centrifugal force (C).  
 

 
 

 

Fig. 3. The gravity analogy for the equiforce concept. (A) 
On a constant slope, if the gravity increases from G to G’, 
the along-slope force increases from G cosα to G’cosα. 
(B) On a changing slope, if the angle that the slope makes 
with the vertical is increased from α to α’, the along-
slope forces can be adjusted to remain the same (i.e. G 
cosα = G’ cosα’). (C) The gravitational force increases 
from G to G’. 

 
 

A B 
 

Fig. 4. Characterization of liquid flow in the equiforce 
spiral channel. (A) The liquid (dyed solutions) was 
successfully filled into one spiral microchannel during 
spinning or rotation of the chip. (B) The schematic 
diagram of a spiral channel near the inlet reservoir, 
showing the model parameters. L0 is the length of the 
short straight channel connecting the inlet reservoir to the 
spiral channel. The junction of the straight and spiral 
channels makes an angle of α0, and is r0 away from the 
CD centre. The length of the filling liquid column in the 
equiforce spiral channel is L. The along-channel 
centrifugal force components in the constant straight 
portion and variable radial portion are given by F and F0, 
respectively. The liquid viscous drag force is given by F2. 
The surface tension at the liquid front meniscus is given 
by S.  

 

Fig. 5. Flow dynamics in the equiforce spiral channel. (A) 
The transit times of the flow in 96 spiral microchannels 
were plotted against distance. (B) The velocities of the 
flow as calculated from the slopes of all 96 traces in (A). 
(C) Curving fitting of the experimental data in one trace 
(circles) to the theoretical model (line), resulting in R = 
0.9996.  
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Fig. 6. Sensitivity tests for the model. (A) Sensitivity test 
of S-F0 (1/2, 1/4, 1/8, 1/16 and 1/32 of the original value).  
(B) Sensitivity test of viscosity (1/2, 1/4, 1/8, 1/16 and 
1/32 of the original value). (C) Sensitivity test of F (2, 4, 
8, 16, 32 time of the original value). 
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