γ_0 -COMPACT , γ^s -REGULAR AND γ^s -NORMAL SPACES

B Ahmad¹ and *S Hussain² ¹Centre for Advanced studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan ² Department of Mathematics, Islamia University, Bahawalpur, Pakistan

ABSTRACT

We define and study the properties of γ^{s} -regular and γ^{s} -normal spaces. We also continue studying γ_{0} -compact spaces defined in Ahmad and Hussain (2006).

Keywords: γ -closed(open), γ -closure, γ -regular (open), (γ , β)-continuous (closed, open) functions, γ_0 -compact, γ^s -regular spaces and γ^s -normal spaces. AMS (2000) subject classification. Primary 54A05, 54A10, 54D10.

INTRODUCTION

Kasahara (1979) defined an operation α on topological spaces. He introduced and studied α-closed graphs of a function. Jankovic (1983) defined α - closed setss and further worked on functions with α - closed graphs. Ogata (1991) introduced the notions of γ -T_i, i = 0,1/2,1,2; and studied some topological properties. Rehman and Ahmad (1992) [respt. Ahmad and Rehman 1993] defined and investigated several properties of γ -interior, γ -exterior, γ closure and γ -boundary points in topological spaces (respt. in product spaces), and studied the characterizations of (γ,β) -continuous mappings initiated by Ogata (1991). Ahmad and Hussain (2003) continued studying the properties of γ -operations on topological spaces introduced by Kasahara (1979). Ahmad and Hussain (2005) defined γ -nbd, γ -nbd base at x, γ -closed nbd, γ -limit point, γ -isolated point, γ -convergent point and γ^* -regular spaces and discussed their several properties. They further established the properties of (γ,β) continuous, (γ,β) - open functions and γ -T₂ spaces.

In this paper, we continue studying γ_0 -compact spaces defined in Ahmad and Hussain (2006) and study its properties. We also define and study some properties of γ^s -regular and γ^s -normal spaces.

First, we recall some definitions and results used in this paper. Hereafter we shall write spaces in place of topological spaces.

Definition (Ogata, 1991). Let (X,τ) be a space. An operation $\gamma : \tau \to P(X)$ is a function from τ to the power set of X such that $V \subseteq V^{\gamma}$, for each $V \in \tau$, where V^{γ} denotes the value of γ at V. The operations defined by $\gamma(G) = G, \gamma(G) = cl(G)$ and $\gamma(G) = intcl(G)$ are examples of operation γ .

Definition (Ogata, 1991). Let $A \subseteq X$. A point $a \in A$ is said to be γ -interior point of A iff there exists an open nbd N of a such that $N^{\gamma} \subseteq A$ and we denote the set of all such points by int_{γ} (A).

Thus

 $\operatorname{int}_{\gamma}(A) = \{ x \in A : x \in N \in \tau \text{ and } N^{\gamma} \subseteq A \} \subseteq A.$ Note that A is γ -open (Ogata, 1991) iff A = $\operatorname{int}_{\gamma}(A)$. A set A is called γ - closed (Ogata, 1991) iff X–A is γ -open.

Definition (Rehman and Ahmad, 1992). A point $x \in X$ is called a γ -closure point of $A \subseteq X$, if $U^{\gamma} \cap A \neq \emptyset$, for each open nbd U of x. The set of all γ -closure points of A is called γ -closure of A and is denoted by $cl_{\gamma}(A)$. A subset A of X is called γ -closed, if $cl_{\gamma}(A) \subseteq A$.

Note that $cl_{\gamma}(A)$ is contained in every γ -closed superset of A.

Definition 1. An operation $\gamma : \tau \to P(X)$ is said to be strictly regular, if for any open nbds U, V of $x \in X$, there exists an open nbd W of x such that $U^{\gamma} \cap V^{\gamma} = W^{\gamma}$.

Definition 2. An operation $\gamma : \tau \to P(X)$ is said to be γ -open, if V^{γ} is γ -open for each $V \in \tau$.

Example 1. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$.

Define an operation $\gamma : \tau \rightarrow P(X)$ by $\gamma(A) = intcl(A)$.

Clearly the γ -open sets are only \emptyset , X, {a}, {b}, {a,b}. It is easy to see that γ is strictly regular and γ -open on X.

Example 2. Let $X = \{a,b,c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}$. Define an operation $\gamma : \tau \rightarrow P(X)$ by $\gamma(A) = cl(A)$.

*Corresponding author email: sabiriub@yahoo.com

Present Address: Department of Mathematics, King Abdul Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Clearly the γ -open sets are only \emptyset , X. It is easy to see that γ is strictly regular but not γ -open on X.

1. γ_0 -compact spaces

Definition (Ahmad and Hussain, 2006). A space X is said to be γ_0 -compact, if for every cover $\{V_i : i \in I\}$ of X by γ -open sets of X, there exists a finite subset I_0 of I such that

$$\begin{array}{c} X= \cup \mbox{ } cl_{\gamma} \ (\ V_i). \\ i \in I_0 \end{array}$$

Then the following characterization of a γ_0 -compact space is immediate:

Theorem (Ahmad and Hussain, 2006). A space X is γ_0 compact iff every class of γ -open and γ - closed sets with
empty intersection has a finite subclass with empty
intersection.

Definition (Ogata, 1991). A space X is said to be γ -T₂ space. If for each pair of distinct points x, y in X, there exist open sets U, V such that $x \in U, y \in V$ and $U^{\gamma} \cap V^{\gamma} = \emptyset$.

Definition (Ogata, 1991). An operation γ is said to be regular, if for any open nbds U ,V of $x \in X$, there exists an open nbd W of x such that $U^{\gamma} \cap V^{\gamma} \supseteq W^{\gamma}$.

Thorem 1. Let X be a γ -T₂ space and suppose that C be a γ_0 -compact subset of X and $x \in X - C$, then there are open sets U_x and V_x in X such that $x \in U^{\gamma}_x$ and $C \subseteq V^{\gamma}_x$ and $U^{\gamma}_x \cap V^{\gamma}_x = \emptyset$, where γ is regular and γ -open.

Proof. Suppose that C is γ_0 -compact subset of X and $x \in X - C$. For each $y \in C$, $y \neq x$. Since X is γ -T₂, there are open sets U_{xy} and V_y containing x and y respectively such that $U^{\gamma}_{xy} \cap V^{\gamma}_{y} = \emptyset$. Now, let { $V^{\gamma}_{y} \cap C : y \in C$ } be γ -open cover of C. Since C is γ_0 -compact, then γ -open cover has a finite subset

 $\{V^{\gamma}y_{1}\cap C\;,V^{\gamma}y_{2}\cap C,\;\ldots\;,V^{\gamma}y_{n}\cap C\;\}$ such that

$$C = \bigcup_{i=1}^{n} cl_{\gamma} (V^{\gamma} y_{i} \cap C).$$

Let $U^{\gamma}y_1, U^{\gamma}y_2, \dots, U^{\gamma}y_n$ be the corresponding γ -open sets containing x. Take

$$U^{\gamma}_{x} = (\bigcap_{i=1}^{n} cl_{\gamma}(U^{\gamma}xy_{i}))$$

and $V_{x}^{\gamma} = (\bigcup_{i=1}^{n} cl_{\gamma}(V^{\gamma}xy_{i})),$

then $x \in U_x^{\gamma}$ and $C \subseteq V_x^{\gamma}$. Where U_x^{γ} and V_x^{γ} are γ -closed, since γ is regular.

Also
$$U^{\gamma}_{x} \cap V^{\gamma}_{x} = (\bigcap_{i=1}^{n} cl_{\gamma}(U^{\gamma}xy_{i})) \cap (\bigcup_{i=1}^{n} cl_{\gamma}(V^{\gamma}y_{i}))$$
$$= \bigcap_{i=1}^{n} (\bigcup_{i=1}^{n} cl_{\gamma}(U^{\gamma}xy_{i}) \cap cl_{\gamma}(V^{\gamma}y_{i}))$$
$$= \bigcap_{i=1}^{n} (\bigcup_{i=1}^{n} cl_{\gamma}(U^{\gamma}xy_{i} \cap V^{\gamma}y_{i}))$$
$$[\gamma \text{ is regular (Rehman and Ahmad, 1992)]}$$
$$= \bigcap_{i=1}^{n} (\bigcup_{i=1}^{n} cl_{\gamma}(\emptyset)) = \emptyset.$$

Theorem 2. Let X be a γ -T₂ space. Then every γ_0 compact subset A of X is γ -closed, where γ is regular and γ -open.

Proof. Let X be a γ -T₂ space and A be a γ_0 -compact subset of X. We show that X – A is γ -open. For this, let x \in X – A. Then y \in A gives x \neq y. Since X is γ -T₂, there are open sets U_{xy} and U_y in X containing x and y respectively such that $U_{xy}^{\gamma} \cap U_{y}^{\gamma} = \emptyset$.

Let the collection $\{ U_y^{\gamma} \cap A : y \in A \}$ is a cover of A by γ -open and γ -closed sets of A.

Since A is $\gamma_0\text{-compact},$ there is a finite subset { $U^\gamma y_i\cap A$: $i=1,2,\,\ldots\,,n\}$ such that

$$A = \bigcup_{i=1}^{n} cl_{\gamma} (U^{\gamma}y_{i} \cap A) = \bigcup_{i=1}^{n} (U^{\gamma}y_{i} \cap A).$$

Now corresponding to each y_i , let $U^{\gamma}xy_i$ be the γ -open set containing x, then $U^{\gamma}_x = \bigcap U^{\gamma}xy_i$ is γ -open containing x, since γ is regular. Also

$$\begin{split} U^{\gamma}{}_{x} & \cap A = U^{\gamma}{}_{x} \cap (\bigcup_{i=1}^{n} (U^{\gamma}y_{i} \cap A)) \subseteq U^{\gamma}{}_{x} \cap (\bigcup_{i=1}^{n} U^{\gamma}y_{i}) \\ & \subseteq \bigcup_{i=1}^{n} (U^{\gamma}{}_{x} \cap U^{\gamma}y_{i}) = \varnothing \end{split}$$

or $U_x^{\gamma} \cap A = \emptyset$. Hence $U_x^{\gamma} \subseteq X - A$ implies $x \in int_{\gamma} (X - A)$. Consequently, $X - A = int_{\gamma} (X - A)$. That is, X - A is γ -open. So, A is γ -closed. This completes the proof.

Definition 3. Let X be a space and $A \subseteq X$. Then the class of γ -open sets in A is defined in a natural way as :

$$\tau \gamma_{A} = \{ A \cap O : O \in \tau_{\gamma} \},\$$

where τ_{γ} is the class of γ -open sets of X. That is, G is γ -open in A iff G = A \cap O, where O is a γ -open set in X.

2. γ^{s} -regular spaces

Definition 4. A space X is said to be γ^{s} -regular space, if for any closed set A and $x \notin A$, there exist open sets U, V such that $x \in U$, $A \subseteq V$ and $U^{\gamma} \cap V^{\gamma} = \emptyset$.

Example. Let X= {a,b,c}, $\tau = \{\emptyset, X, \{a\}, \{b,c\}\}$. For b \in X, define an operation $\gamma : \tau \rightarrow P(X)$ by $\gamma(A) = \begin{cases} A, & \text{if } b \in A \\ cl(A), & \text{if } b \notin A \end{cases}$

Then easy calculations show that X is a γ^{s} -regular space.

Theorem 3. Every subspace of γ^s -regular space X is γ^s -regular, where γ is regular.

Proof. Let Y be a subspace of a γ^s -regular space X. Suppose A is γ -closed set in Y and $y \in Y$ such that $y \notin A$. Then $A = B \cap Y$, where B is γ -closed in X. Then $y \notin B$. Since X is γ^s -regular, there exist open sets U, V in X such that $y \in U$, $B \subseteq V$ and $U^{\gamma} \cap V^{\gamma} = \emptyset$. Then $U \cap Y$ and $V \cap Y$ are open sets in Y containing y and A respectively, also

$$\begin{aligned} (U \cap Y)^{\gamma} \cap (V \cap Y)^{\gamma} &\subseteq (U^{\gamma} \cap Y^{\gamma}) \cap (V^{\gamma} \cap Y^{\gamma}) \\ & (\gamma \text{ is regular }) \end{aligned} \\ &= (U^{\gamma} \cap V^{\gamma}) \cap Y^{\gamma} \\ &= \varnothing \cap Y^{\gamma} = \varnothing. \end{aligned}$$

This completes the proof.

3. γ^{s} -normal spaces

Definition 5. A space X is said to be γ^s -normal space, if for any disjoint closed sets A , B of X, there exist open sets U, V such that $A \subseteq U$, $B \subseteq V$ and $U^{\gamma} \cap V^{\gamma} = \emptyset$.

Example . Let $X = \{a,b,c,d\}$, $\tau = \{ \emptyset, X, \{a\}, \{b\}, \{a,b\}, \{b,d\}, \{a,b,d\}, \{b,c\}, \{b,c,d\}, \{a,b,c\}\}.$

For $b \in X$, define an operation $\gamma : \tau \rightarrow P(X)$ by

$$\gamma(\mathbf{A}) = \begin{cases} cl(\mathbf{A}), & \text{if } \mathbf{b} \in \mathbf{A} \\ clintcl(\mathbf{A}), & \text{if } \mathbf{b} \notin \mathbf{A} \end{cases}$$

Then X is γ^{s} -normal.

Next, we characterize γ^{s} -normal space as :

Theorem 4. A space X is γ^s -normal if for any closed set A and open set U containing A, there is an open set V containing A such that

 $A \subseteq V \subseteq cl_{\gamma}(V^{\gamma}) \subseteq U^{\gamma},$ where γ is γ -open and strictly regular. **Proof**. Let A, B be disjoint closed sets in X. Then $A \subseteq X-B$, where X-B is open in X. By hypothesis, there is a open set V such that

$$\operatorname{cl}_{\gamma}(V^{\gamma}) \subseteq (X - B)^{\gamma} \qquad \dots \qquad (1)$$

(1) gives $B^{\gamma} \subseteq (X-cl_{\gamma}(V))^{\gamma}$ and $V \cap (X-cl_{\gamma}(V^{\gamma})) = \emptyset$. Consequently, $A \subseteq V$, $B \subseteq X-cl_{\gamma}(V^{\gamma})$ and $V^{\gamma} \cap ((X-cl_{\gamma}(V^{\gamma})))^{\gamma} = \emptyset$.

This proves that X is γ -normal. This completes the proof.

Theorem 5. A γ^s -normal γ -T₁ space is γ^s –regular, where γ is strictly regular.

Proof. Suppose A is a closed set and $x \notin A$. Since X is a γ -T₁ space, therefore by Proposition 4.9 (Ogata, 1991) each {x} is γ -closed in X. Since X is γ^{s} -normal, therefore there exist open sets U, V such that {x} \subseteq U, A \subseteq V and U \cap V = \emptyset , or x \in U, A \subseteq V and U \cap V = \emptyset implies that $U^{\gamma} \cap V^{\gamma} = \emptyset$, since γ is strictly regular. Thus X is γ^{s} - regular. This completes the proof.

Theorem 6. A closed subspace of a γ^s -normal space X is γ^s -normal, where γ is regular.

Proof. Let A be a closed subspace of γ^s -normal space X. Let A₁, A₂ be disjoint closed sets of A. Then there are closed sets B₁, B₂ in X such that A₁= B₁ \cap A, A₂ = B₂ \cap A. Since A is closed in X, therefore A₁, A₂ are closed in X. Since X is γ^s -normal, there exist open sets U₁, U₂ in X such that A₁ \subseteq U₁, A₂ \subseteq U₂ and U^{γ}₁ \cap U^{γ}₂= \varnothing . But then A₁ \subseteq A \cap U₁, A₂ \subseteq A \cap U₂, Where A \cap U₁, A \cap U₂ are open in A and

$$\begin{aligned} (A \cap U_1)^{\gamma} &\cap (A \cap U_2)^{\gamma} \subseteq (A^{\gamma} \cap U^{\gamma}_1) \cap (A^{\gamma} \cap U^{\gamma}_2) \\ (since \ \gamma \ is \ regular) \\ &= A^{\gamma} \cap (U^{\gamma}_1 \cap U^{\gamma}_2) \\ &= A^{\gamma} \cap \emptyset = \emptyset. \end{aligned}$$

This proves that A is γ^{s} -normal. Hence the proof.

Theorem 7. Every γ_0 -compact and γ -T₂ space is γ^s -normal, where γ is regular and γ -open.

Proof. Let X be γ_0 -compact and γ -T₂ space and C₁, C₂ be ant two disjoint γ -closed subsets of X. Then being γ -closed subset of γ_0 -compact space, C₁ is γ_0 -compact. By Theorem 1, for γ_0 -compact C₂ and $x \notin C_2$, there are open sets U_x, V_x such that

$$\mathbf{x} \in \mathbf{U}_{\mathbf{x}}^{\gamma}, \mathbf{C}_2 \subseteq \mathbf{V}_{\mathbf{x}}^{\gamma} \text{ and } \mathbf{U}_{\mathbf{x}}^{\gamma} \cap \mathbf{V}_{\mathbf{x}}^{\gamma} = \emptyset.$$
 ... (2)

Let the set { $U_x^{\gamma} : x \in C$ } be a cover of C_1 by γ -open and γ -closed sets of C_1 . Since C_1 is γ_0 -compact, so there are finite number of elements $x_1, x_2, ..., x_n$ such that

$$C_1 \subseteq \ \bigcup_{i=1}^n cl_\gamma \left(U^\gamma x_i \ \right) \ = \ \bigcup_{i=1}^n \left(U^\gamma x_i \ \right).$$

$$Let \ U = \bigcup_{i=1}^n (\ U^\gamma x_i \) \ , \ \ V = \ \bigcap_{i=1}^n (\ V^\gamma x_i \).$$

Then $C_1 \subseteq U$, $C_2 \subseteq V$ and

$$(U \cap V)^{\gamma} = ((\bigcup_{i=1}^{n} (U^{\gamma} x_{i}) \cap (\bigcap_{i=1}^{n} (V^{\gamma} x_{i}))^{\gamma})$$
$$= (\emptyset)^{\gamma} = \emptyset.$$

Hence X is γ^{s} -normal. This completes the proof.

REFERENCES

Ahmad, B. and Rehman, FU. 1993. Operations on topological spaces II, Math. Today. 11: 13-20.

Ahmad, B. and Hussain, S. 2003. Properties of γ -operations on topological spaces, Aligarh Bull. Math. 22 (1): 45-51.

Ahmad, B. and Hussain, S. 2005. γ -Convergence in topological spaces, Southeast Asian Bull. Math. 29(5): 835-842.

Ahmad, B. and Hussain, S. 2006. γ^* - regular and γ -normal spaces, Math. Today. 22 (1): 37-44.

Jankovic, DS. 1983. On functions with closed graphs, Glasnik Mat. 18: 141-148.

Kasahara, S. 1979. Operation-compact spaces, Math. Japon. 24: 97-105.

Ogata, H. 1991. Operations on topological spaces and associated topology, Math. Japon. 36 (1): 175-184.

Rehman, FU. and Ahmad, B. 1992. Operations on topological spaces I, Math.Today. 10: 29-36.

Willard, S. 1970. General Topology, University of Alberta, Volume A, Addison Wesely., MR 41# 9173.