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ABSTRACT 

 
This paper describes a theoretical analysis of micropolarity-surface roughness interaction of infinitely long 
journal bearing. The modified averaged Reynolds type equation for the study of surface roughness has been 
derived on the basis of Eringen’s micropolar fluid theory. The generalized stochastic random variable with non-
zero mean, variance and skewness is used to mathematically model the surface roughness on the bearing 
surface.  The more accurate Reynolds boundary conditions are utilized to solve the average Reynolds type 
equation.  The numerical results are obtained for the fluid film pressure, load carrying capacity and the 
frictional force. It is found that the performance of the long journal bearing is dependent on the type of 
roughness pattern on the bearing surface and the lubricant additives.  Further, it is found that the performance of 
the bearing improves due to the presence of negatively skewed surface roughness on the bearing surface and 
these effects are more pronounced for the micropolar lubricants. 
 
Keywords: Surface roughness,  journal bearing, micropolar fluid. 

 
INTRODUCTION 
 
The theoretical study of journal bearings becomes more 
realistic due to the consideration of many physical effects. 
The study of journal bearings with an assumption of 
smooth bearing surface will not predict the bearing 
performance accurately. Generally the size of the 
roughness asperity height is of the same order as the mean 
separation between the lubricated contacts. Hence, the 
finish surface that can improve the bearing performance 
has been sought. Consequently, several attempts have 
been made to study the surface roughness effects on the 
bearing performance by using both deterministic and 
stochastic methods. Out of these, the stochastic models 
are the best suited to characterize the surface roughness of 
the bearings for randomly distributed asperities. The 
stochastic study of Tzeng and Saibel (1967) attracted 
several investigators in the field of tribology. A new 
stochastic averaging approach for the study of roughness 
effects on the hydrodynamic lubrication was proposed by 
Christesen and Tonder (1969).  Raj and Sinha (1983) have 
studied the effect of transverse surface roughness on the 
short journal bearings under dynamic loading. Lin et al. 
(2002) studied the Surface roughness effects on the 
oscillating squeeze film behavior of  long partial journal 
bearings. Recently Naduvinamani and Gurubasavaraj 
(2004) studied the surface roughness effects on squeeze 
films in curved circular plates using Christensen’s 
stochastic theory for rough surfaces.  All these studies are 
based on the assumption that, the probability density 
function for the random variable characterizing the 
surface roughness is symmetric and has zero mean. 
However, in general it is valid as a first approximation. 

But in practice, due to non-uniform rubbing of surface the 
distribution of surface roughness may be asymmetrical. 
Andharia et al. (2001) proposed the study of effect of 
surface roughness on hydrodynamic lubrication of slider 
bearings by modeling the surface roughness by a 
stochastic random variable with non-zero mean, variance 
and skewness. Naduvinamani et al. (2003) extended the 
application of this theory to couple stress fluid lubrication 
of slider bearings with rough surfaces. Recently 
Naduvinamani and Biradar (2006) studied the effect of 
surface roughness on porous inclined slider bearings with 
micropolar fluid. 
 
Several experimental studies show that the 
effectiveness of lubricating oil can be improved 
on blending small amounts of long chained 
polymer additives with Newtonian lubricants. 
Most of the modern lubricants are mainly the 
polymer thickened oils or lubricants with 
additives. These lubricants become heavily 
contaminated with suspended metal particles 
and they start to exhibit non-Newtonian 
behavior.  To predict the accurate flow behavior 
of such lubricants with additives, several 
microcontinuum theories have been proposed. 
Eringen’s (1966) micropolar fluid theory is the 
generalization of the classical theory of fluids, 
which accounts for polar effects. This theory 
accurately describes the rheological behaviors 
of lubricants with polymer additives Prakash 
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assumption of perfectly smooth surfaces. In this paper, an 
attempt has been made to study the effect of random 
roughness on the performance of  infinitely long journal 
bearings lubricated with micropolar fluids. A general type 
of surface roughness is mathematically modeled by a 
stochastic random variable with non-zero mean, variance 
and skewness.   
 
Consider  the flow of a micropolar lubricant in a wedge 
shaped film built up in a journal bearing operating with a 
surface  velocity U under an imposed load W. Fig. 1(a) 
and 1(b) are schematic  diagrams of journal bearing and 
its developed surfaces. It consists of two surfaces 
separated by a lubricant film. The inner surface of the 
journal bearing is moving with a constant velocity U in its 
own plane while the upper surface is at rest. It is assumed 
that, the bearing surfaces are rough. The shape of the 
lubricant film formed between the two surfaces is 
convergent.  
 
To represent the surface roughness the mathematical 
expression for the film thickness is considered to be 
consisting of two parts 

shxhxH += )()(     (1) 

where θcos)( eCxh += is the mean film 

thickness and sh  is a randomly varying quantity 
measured from the mean level and thus characterizes the 
surface roughness, e and C are as shown in figure 1(a).
  
Further, the stochastic part sh  is considered to have the 

probability density function )( shf  defined over the 

domain  .chc s ≤≤−  Where c is a maximum deviation 
from the mean film thickness.  
The mean *α , the standard deviation *σ and  the 

parameter *
1ε , which is the measure of symmetry of the 

random variable sh  are defined as  
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               (4) 
where  E  is an expectation operator defined by 
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The parameters *α , *σ  and *
1ε are all independent of x. 

The mean *α and the parameter *
1ε        can assume both 

positive and negative values whereas *σ  can always 
assume positive values. 
 
The lubricant in the film region formed between two 
surfaces of the bearings is assumed to be an 
incompressible, laminar fluid flow with negligible body 
forces and negligible inertia forces. The velocity and 
microrotation vectors for the micropolar lubricant are 

assumed to be ),,( 321 uuuV =  and ),0,( 31 wwV =  
respectively. Using the usual assumptions of lubrication 
theory Pinkus and Sternlitch (1961) the basic equations 
governing the flow of the micropolar lubricant under 
steady state conditions become  
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Conservation of angular momentum: 
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where γ  and 1µ are the additional viscosity coefficients 
for the micropolar lubricants. 
 
The modified Reynolds equation for smooth journal 
bearing lubricated with micropolar fluid was obtained by  
Zaheeruddin and Isa (1978) in the form  
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For an infinitely long journal bearing equation (12) 
reduces to 
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Multiplying equation (13) by )( shf  and integrating with 

respect to sh  from chc s ≤≤−  and also the using  
equations (2) - (4), gives the averaged Reynolds type 
equation in the form 
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where the  p ( =E (p) ) is the expected value of the film 
pressure p . 
Introducing the non-dimensional quantities 
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into equation (14), the non-dimensional Reynolds type 
equation is obtained in the form 
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Once integration of equation (15) and the use of boundary 
condition 
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Assume the pressure distribution to be asymmetric and 
the boundary condition to be  

0P =  at 0=θ   
0P =  at cθθ =     (17) 

 
Integrating equation (16) using boundary conditions (17) 
gives 
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where 
)cos(1 coh θε+= ,   cθ  is determined from equation 

(18) for different values of ε  and are tabulated in Table 
1. Using these values of cθ equation (16) is solved 
numerically. 
 
The load carrying capacity W of the bearing is defined as 
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which on using equation (19) gives the non-dimensional 
load carrying capacity is 
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After substituting )cos(1 c
o

C
h θε+=  for the 

corresponding values of ε , the load carrying capacity is 
determined  from equation (21). 
 
Frictional force acting on the journal surface is given by  
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The non-dimensional frictional force is given by 
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The non-dimensional coefficient of friction is given by 

W
FC f =      (26) 

 
RESULTS AND DISCUSSION 
 
The surface roughness effect on the performance 
characteristics of one-dimensional infinitely long journal 
bearings lubricated with micropolar fluid is analyzed 
through the dimensionless parameters 

11 ,,,,, µεεσα M . As the roughness parameters 
tend to zero, the results obtained in this paper reduce to 
smooth case studied by Zaheeruddin and Isa (1978).       
The following set of values are used for various non-
dimensional parameters α = [ -0.1 - 0.1 ];     ε1 = [ -0.1 - 
0.1 ];  σ = [ 0.0 - 0.4 ];   ε = [ 0.1 – 0.4 ];  M = 5.0 and 
10.0 and 1µ = [ 0.0 - 0.4 ] for the numerical computations 
of journal bearing characteristics. The numerical values 
for the roughness parameters 1,, εσα are also so 
chosen that the corresponding film shapes are feasible. 
 
The variation of non-dimensional pressure P with the 
angular coordinate θ  for different values of ε , 

1, εα and σ are depicted in the figures 2 - 5 respectively 

in all these figures it is assumed that 1µ  = 0.4. From 
figure 2 it is observed that P increases for increasing 
values of ε and decreases for increasing values of M. The 
effect of roughness parameter α  and 1ε  on the variation 
of P with θ  is shown in figures 3 and 4 respectively. It is 
observed that, P increases for negatively increasing values 
of  α  and 1ε and decreases for positively increasing 

values of α  and 1ε . From figure  5 it is observed that 
increasing values of σ causes P to decrease. 
 
The variation of non-dimensional load carrying capacity 
W  with 1µ  is shown in figures 6 – 9  for different 

values of ε , 1, εα and σ .  It is observed that W  

increases for increasing values of 1µ and ε . The effect 

of roughness parameter α  and 1ε on the variations of  

W  and  1µ is depicted in figures 7 and 8 respectively. It 

is observed that  W  increases for negatively skewed 
surface roughness whereas decreases for positively 
skewed surface roughness.  From figure  9 it is observed 
that W  decreases for increasing values of  σ . 
 
Figures 10,11,12 and 13 depicts the variation of  non-
dimensional frictional force F with 1µ for different 

values of ε , 1, εα and σ respectively. F increases for 

increasing values of 1µ and  ε ( Fig. 10 ). The negatively 
skewed surface roughness on the bearing surface causes 
an increasing  F  whereas, the negatively skewed surface 
roughness reduces the frictional force F   ( Figures 11 
and 12 ). From figure 13 it is observed that increasing 
values of σ decreases F .    
 
Variation of non-dimensional coefficient of friction with  

1µ  is shown in figures 14, 15 and16  for different values 

of αε ,  and 1ε .  It is observed that, C  decreases for 

increasing values of 1µ and ε . The negatively skewed 

surface roughness increases C  where as the positively 

skewed surface roughness decreases C . 
 
CONCLUSIONS 
 
On the basis of numerical computations and the results 
presented in figures 2 – 16, the following conclusions can 
be drawn. 
1. The micropolar lubricants provide an increase in the 

load carrying capacity and decreases the coefficient 
of friction as compared to the corresponding 
Newtonian case ( 1µ =0 ). 

2. The presence of negatively skewed surface roughness 
on the bearing surface increases the load carrying 
capacity, frictional force and the coefficient of 
friction, whereas the reverse trend is observed for the 
positively skewed surface roughness. 

3. These results are more accentuated for micropolar 
fluids. 
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Mathematical Formulation of the problem 
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Fig. 1(a) Physical configuration of the problem 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. (b). Geometry of the developed surfaces of the journal and bush 
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Table. 1   Shows the 
C
h0  for different values of ε (eccentricity ratio) 

 
Eccentricity ratio 

ε  C
h0  

0.1 5.325699 

0.2 5.388539 

0.3 5.482800 

0.4 5.608481 
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Fig. 5 Variation of non-dimensional pressure     with θ for different values of σ
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Fig. 13 Variation of non-dimensional Frictional force     with         for different
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NOMENCLATURE 
 

C radial clearance 
c   maximum asperity height from the mean level 

fC  non-dimensional frictional coefficient, 
W

F=   

E  expectancy operator defined by equation (5) 
F   frictional force 
F  non-dimensional frictional force, 

Ω
= 2

1

LR
CF

µ
 

H   fluid film thickness, shxh += )(  

sh  random variable 

h   mean film thickness, )cos1()( θε+== Cxh  

C
ho  non-dimensional film thickness at maximum 

pressure 
L   axial length of the bearing 

M micropolar parameter,  
γ

µ
4

2C
=  

p  pressure in the film region. 
P  non-dimensional pressure 
R journal radius 

321 ,, uuu  components of  fluid velocity in x, y, and z 
directions respectively 

U   surface velocity of the journal 

321 ,, www microrotation velocity components 
W load carrying capacity 
W   non-dimensional load carrying capacity 

Ω
= 3

2
1

LR
CWW

µ
 

r, θ, z cylindrical coordinates 
zyx ,,  rectangular coordinates 

*α   mean defined by equation (2) 
α   mean defined by equation 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

C

*α  

*
1ε    roughness parameter defined by equation (4) 

1ε    non-dimensional form of *
1ε   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 3

*
1

C
ε  

 ε          eccentricity ratio,    ⎟
⎠
⎞

⎜
⎝
⎛=

C
e  

*σ  standard deviation defined by equation (3) 

σ  non-dimensional standard deviation  
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

*

C
σ  

µ   viscosity coefficient of the base lubricant 

1µ   non-dimensional viscosity coefficient, 
µ

µµ 1
1 =

 

γµ ,1  viscosity coefficient for micropolar fluid 
Ω  angular velocity of the journal  
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