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ABSTRACT 

 
The diffraction of a spherical acoustic wave from an absorbing half plane due to an arbitrary time dependent source distribution in the 
presence of a moving fluid is considered. The convolution integral appearing in the process of calculating inverse temporal transform has 
been evaluated asymptotically to present the diffracted field. This procedure is applicable to any type of time dependence provided the 
duration of incoming signal is small as compared to the emitted signal. 
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INTRODUCTION  
 
The transient wave phenomenon is an important field of 
discussion in the wave motion theory which gives a more 
complete picture of the wave processes. The present 
ability to produce short electromagnetic pulses, which are 
being used as diagnostic tools for the study of implosion 
and other wave material applications, requires the 
development of new time dependent techniques. 
Stimulated by various applications that require the 
explicit treatment of time dependent effects, many 
scientists worked on time dependent problems, for 
instance,  Friedlander (1958), Rienstra (1981), Jones 
(1986), Lakhtakia et al. (1987), Lakhtakia et al. (1989), 
Sun et al. (1991), Asghar et al. (1991), Asghar et al. 
(1998).  
     
The objective of this paper is to discuss the general time 
dependent problem of diffraction of a spherical acoustic 
wave from an absorbing half plane in a moving fluid, 
which is perhaps a first attempt for this type of boundary.  
The temporal Fourier transform has been applied to obtain 
the transfer function in the transformed plane.  Once the 
transfer function is available, an inverse temporal 
transform is used to obtain the results in time domain. The 
convolution technique is employed to calculate the 
inverse temporal transform and the resulting convolution 
integral has been evaluated approximately. This method 
of calculations can be used for various types of incoming 
signals whose amplitude characteristic is negligible in 
certain parts of the frequency axis (low pass filters). 
These filters are important in applications because the 
results obtained for these filters can be used to analyze 
more general filters, see Papoulis (1962). Finally, we 
employ this procedure to calculate the diffracted field due 
to an impulsive point source and triangular pulse from an 
absorbing half plane.  
 

  
Formulation of the Problem  
 
We consider the scattering of an acoustic wave from a 
semi-infinite absorbing plane occupying the position 

0, 0.y x= ≤  The plane is assumed to be of negligible 
thickness and satisfies the absorbing boundary 
condition - 0n ap u z =  on both sides of its surface, 
Morse and Ingard (1961).  Here, p is the surface 

pressure and nu the normal derivative of the perturbation 

velocity, az the acoustic impedance of the surface and n 
a normal pointing from the fluid into the surface. The 
whole system is assumed to be placed in a fluid moving 
with subsonic velocity U parallel to the x − axis. The 
perturbation velocity u of the irrotational sound wave can 
be written as . ψ= ∇u The resulting pressure in the 
sound field is given by 
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where 0ρ  is the density of the undisturbed stream.  We 
consider a point source to be located at the position 

0 0 0( , , )x y z  and the time dependence is introduced 

through the function ( )f t . Thus, we have to solve the 
following time dependent boundary value problem 
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where 0 / ,ac z cβ ρ= is the velocity of sound and 

/M U c= is the Mach number. For subsonic flow, 
| | 1M <  and Re 0.β >   
 
Solution of the Problem 
 
We define the temporal Fourier transform pair as  
 

(4) 
 
Now, taking temporal transform of Eqs.(1)-(3), we obtain 

 

   (5) 
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where ( )F w is temporal transform of ( )f t and its value 
is negligible outside an interval ( , )−Ω Ω  (Papoulis, 
1962) and / .k w c=  We observe that the mathematical 
problem in the transformed w − plane is the same as in 
case of steady state (harmonic time dependent) problem, 
Asghar et al. (1991) except a multiplicative factor ( )F w  
in the right hand side of the wave equation. Thus, we can 
employ the results of Asghar et al. (1991) directly to write 
down the diffracted field as  
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Now, taking the inverse temporal transform of Eq.(8), we 
get  

 

 
(10) 

It is important to note that 2( cos )L K x q+ and 

2( cos )L K x q- - are independent of .K  The integral 
appearing in Eq.(10) may be solved using the convolution 
theorem. Thus, 
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where 
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where (.)H  is the Heaviside function. Now, we give a 
brief description of the approximate method for 
evaluating the convolution integral (11) between two 
functions ( )f t and ( ).g t  For that, Eq.(8) can be 
rewritten as 
 

 ( , , ; ) ( ) ( ).x y z w F w G wφ =   
The ' thp   moment of the function  ( )f t  denoted by 

,m p  is defined by  
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Using the moment theorem (Papoulis, 1962),  
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Thus, the field ( , , ; )x y z wf takes the form 
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Since ( ) ( )piw G w  is the Fourier transform of the  
' thp derivative of ( ),g t   therefore the inverse temporal 

transform of Eq. (13) term wise yields 
 

 

                                                       
(14) 

Thus, ψ ( , , ; )x y z t appears as a series in terms of 
derivatives of ( )g t and the moments of ( )f t . For the 
validity of Eq. (14), it is assumed that Eq.(13) converges 
for every .w   Even, if this happens, the convergence is 
slow and a large number of terms is required for a 
satisfactory evaluation of ( )f t . However, if we assume 
that the temporal transform ( )G w  is negligible outside 
an interval ( , )−Ω Ω  and in this interval ( )F w  is 
sufficiently smooth, so that for | | ,w < W  a small number 
of terms in Eq.(13) suffices to approximate 
adequately ( ),F w   that is,   
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Thus, Eq.(14) takes the form 

 

                                        (15) 
The above assumption roughly stated in terms of time 
domain says that the duration of ( )f t  should be small as 
compared to the duration of ( ).g t   
 
Examples  
 
 (1)  Consider the impulsive point source ( ) ( ),f t td=  
where ( )td  is the Dirac delta function. In this case   

0 1 21, ... 0,m m m mk= = = = =
 

and the field ψ ( , , ; )x y z t  given by Eq. (15) takes the 
form 

 
(16) 

 
Here, we observe that the diffracted field given by Eq. 
(16) corresponds to the field presented in Asghar et al. 
(1996), which proves the validity of this method. 
 
(2)  As a second example, we consider the triangular 
pulse  
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whose temporal transform is 
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The first three moments of ( )f t are given by                                    
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Substituting these values in Eq. (15), we obtain the field  
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where A is given by Eq. (9) and  
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Concluding Remarks  
 
In this paper, we have successfully employed the method 
of moments to present the asymptotic diffracted field 
from an absorbing half plane due to an arbitrary time 
dependent source with the assumption that the duration of 
incoming signal is small as compared to the emitted 
signal. As far as the validity of the method is concerned, 
we have provided a useful check in Example (1). It is 
interesting to note that the field due to a rigid half plane 
can be obtained by taking the absorption parameter  b  to 
be zero and the still fluid results by taking Mach number 
M equal to zero in Eq. (15) respectively.  
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