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ABSTRACT 

 

Oscillations of power systems cause instability in power networks; hence PSS is used in conventional methods. But 

finding the optimized gains is one of the main problems in designing stability of power network. In this paper, a single 

machine connected to infinite bus system and 10-machine 39-bus system is considered for study. It's shown that finding 

the optimal eigenvalues of a single machine connected to infinite bus system and 10-machine 39-bus with Theory of 

Optimal Control Method is more optimal than the methods that are inspired by nature, such as Genetic, 

Electromagnetism-Like, Simulated Annealing, and Particle Swarm Optimization. Therefore, it's tried to show the real 

image for operation of mentioned algorithms in comparison with each other. With proper using of optimal control 

method, efficiency of this method is defined. To show the effectiveness of this method, a comparison between these 

algorithms is performed.  
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INTRODUCTION  

 

The synchronized generator plays a very important role in 

power networks. Any kind of disorder in the generator 

causes errors and principle problems in the system. Low 

frequency causes effects that remain in the system for a 

long time, affecting operating conditions, sometimes 

limiting the potential of power transmission. Thus such 

disturbances affecting the system’s capability to maintain 

synchronism are called small disturbance or small signal. 

Experiences in power engineering regarding the use of 

power systems has shown that oscillations are related to 

the lack of adequate and essential damping in a system’s 

mechanical mode; the appropriate added damping could 

stabilize a system to an acceptable extent against 

oscillations (Shariatmadar et al., 2013). Therefore, the 

best choice for the oscillations damping is the theory of 

optimal control (LQR) (Nazarzadeh et al., 1998). During 

low frequency oscillations, the induced current in the 

damping wiring of the generator could be neglected 

because of its low value. Hence the damping wiring is 

eliminated in modeling the generator. On the other hand, 

the normal oscillating frequency of the windings in d, q 

axes of the synchronized rotor is very high, and its 

specific values will have no particular effects on low 

frequency oscillations (Abido et al., 2000). The important 

role here will be from the machine excitation winding, 

since its frequency is low and this ending is directly 

connected to the excitation system, where the 

complementary controller is applied (Kundur, 1994; 

Abido, 2000; Falehi et al., 2012). At this stage the need 

for a power system stabilizer called PSS that could 

increase damping by auxiliary stabilizing signals is 

tangible. At present, power system stabilizers are 

extensively used in power networks. These stabilizers 

have acceptable but not optimized performance. Babaei et 

al. (2009) in the appendix deals with designing a PSS in a 

machine, connected to an infinite connection by the 

optimized algorithm of particles compaction Panda and 

Padhy (2008) and Gui et al. (2000) deal with the 

optimized design of the PSS using the Particle Swarm 

Optimization method and Theory of Control Method 

through increasing the speed. In the optimized PSS design 

of a 10-machine system and 39-bus system is made by 

using Simulated Annealing (SA) and Particle Swarm 

Optimization (PSO) methods that these two methods were 

compared with each other (Jeevanandham and Gowder, 

2009). From the perspective of this paper, these studies 

and most of other studies in this course have relatively 

optimal answers and we'll find the answers more optimal. 
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This method was investigated in several different cases 

and it was observed that has a better response. Theory of 

Optimal Control Method in obtaining eigenvalues, is 

easier than these algorithms. In this study, angular gain of 

rotor is compared with inspired by nature methods such as 

Genetic and Electromagnetism-Like algorithms, and also 

Simulated Annealing and Particle Swarm Optimization 

algorithms in (Jeevanandham and Gowder, 2009) with the 

optimal control response. All of these responses are 

displayed and they are visible. 

 

PROBLEM FORMULATION 

 

In this section, the eigenvalue based objective function is 

used for optimal selection of PSS parameters (Abido et 

al., 2000) and the optimization problem is solved with 

using of Genetic, Simulated Annealing, 

Electromagnetism- Like, Particle Swarm Optimization, 

and Theory of Optimal Control Method (TOCM). For the 

stabilization of a system, the eigenvalues must be on the 

left j  axis. So, for single machine infinite bus system, 

select the parameters of the PSS to minimize following 

objective function: 

 

{Re( ) }tF max                                   (1)  

Where 
t
 is closed loop eigenvalue and  is relative 

stability factor that is chosen 2 2.5    .  

 

It is clear, if a solution is found such that 0F  , then the 

resulting parameters simultaneously relatively stabilize the 

collection of plants (Abido et al., 2000). It should be noted 

that just the system electromechanical modes are used in 

the objective function.  

 

Also the bounds on the parameters used in the inspired by 

nature algorithms for the stabilizer adjustable gain and 

time constants are [0.01, 10] and [0.02, 1], respectively. 

 

SYSTEM MODEL 

 

The main role of the power stabilizer is to increase the 

dampness of the system by auxiliary stabilizing signals. 

The action of a PSS is to extend the angular stability 

limits of a power system by providing supplemental 

damping through the generator excitation (Kundur, 1994). 

The conventional lead-lag power system stabilizer is shown 

in (Fig. 1). The first block is stabilizer gain. The second 

block is washout term with a time lag TW. The third block is 

a lead compensation to improve the phase lag through the 

system (Kundur, 1994). Also the subscript i in PSS block, 

indicates the values for i-th machine. So, the PSS transfer 

function is obtained according to Equation 2. 
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The numerical values of T2 and Tw are expressed in Section 

9. T1 and KSTAB are assumed to be adjustable parameters. In 

this paper, the single machine connected to infinite bus 

system as well as 10- machine, 39-bus system is considered. 

The optimization problem is selection of these PSS 

parameters. The optimization problem can be solved 

using Genetic, Simulated Annealing, Electromagnetism- 

Like, Particle Swarm Optimization and TOCM. For a 

given operating point, the power system is linearized 

around the operating point, the eigenvalues of the closed-

loop system are computed, and the objective function is 

evaluated. The block diagram of AVR with PSS is shown 

in Figure 2. 

 

 In this figure, the constants K1, K2, K4, K5 and K6 are 

dependent on the actual real power (P) and reactive power 

(Q) loading as well as the excitation levels in the 

machine. K3 is a function of the ratio of impedances. Also 

the single line diagram of 10-machine 39-bus system is 

shown in Figure 3. The system data can be found in 

(Abido et al., 2000). 
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Fig. 1. Structure of power system stabilizer. 
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Fig. 2. Small-signal block diagram of the system with 

excitation System, AVR and PSS. 
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Fig. 3. One-line diagram of 10-machine, 39-bus system. 

 

GENETIC ALGORITHM 

 

This algorithm is based on the evolution theory of 

Darwin. The only part of the population generated in this 

algorithm is that which has the best characteristics. 

 

To determine the optimized parameters of PSS, the 

relevant coefficients are considered chromosomes by 

using the genetic algorithm.  

 

The structure for which is shown in Figure 4. 

 

 
 

Fig. 4. Structured genetic algorithm. 

 

    This algorithm has the same trend as Haupt (2004). 

 

ELECTROMAGNETISM-LIKE ALGORITHM 

 

This algorithm, abbreviated EM, is known to be one of the 

new methods in ultra-revelation optimization, based on 

collective intelligence. One of the strong points of this 

algorithm is its few parameters, which allows its suitable 

amount to be determined by trial and error most of the 

time. In each repeat, the best obtained article in this 

algorithm is transferred to the next repetition. The 

procedures and stages of this algorithm can be described 

in 4 main parts. Hence, the following parameters must be 

identified and defined before using the algorithm. m is the 

number of used particles that is often some 10 digits; 

MaxIter is the maximum number of iterations needed to 

finish the execution of the algorithm, according to Birbil 

and Fang (2003); 25MaxIter n ; n is equal to the 

variables in the case and is clearly dominant in different 

trial and error problems, on the content of the case; LSIter 

is Number of local search iterations, and  is the 

parameter of the local numerical search in [0,1] time. The 

general form of the EM algorithm is expressed as follows: 

 

1:  Initialize () 

2:  iteration1 

3:  while iteration < MaxIter do 

4: Local (LSIter ,  ) 

5: F CalcF () 

6: Move (F) 

7: iteration iteration + 1 

8:  end While 

 

The vector of the random response in line 1 is dispersed 

in the domination of the case. In lines 3 to 8 of the local 

search procedures (Local), calculation of the general force 

on each of the particles  (CalcF) and displacement of the 

particles for the imposed force (Move) is done continually 

and a definite number of times (Birbil and Fang, 2003). 

 

 Generation of random vectors 

Relation (4) is used to generate random vectors: 

                                                                 

( )i

k k k kx l u l                               (3) 

                                      

Where ( 1,...., ),( 1,..., )k n i m  , ~ (0,1)U . 

This relation determines the best function value at each 

point and finds the best place of the vector that leads to 

the best state for the target function. 

 

A. Local search 

After distributing the vectors randomly in the problem 

domain, the local function deals with the local search 

adjacent to each response by applying random variations 

to each component of the vector x
i
. In this search, and 

LSIter parameters, respectively, determine the vicinity of 
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the local search. By defining relation (4), we will let the x
i
 

components change to the maximum amount. 

 

(max { })k k ku l                                 (4) 

                      

Thus each of the x
i
 components will remain in the case of 

domain. Now, we should temporarily store x
i
 in a 

variable, such as y, and then simultaneously change one 

of the y components randomly and equal to the obtained 

step in the maximum repetition of LSIter. If applying the 

changes leads to a value less than f(x
i
) for f(y), then 

{ ( ) ( )}if y f x replaces the vector y to vector x
i
, and 

the local search will be performed for the place adjacent 

to vector x
i+1

. After the local search in the neighborhood 

of all the responding vectors, x
best

 will be determined 

(Birbil and Fang, 2003). 

 

 Calculation of the force vector 

According to Coulomb’s law, the imposed force on each 

of the two loaded particles in an electrostatic system is 

equivalent to the multiplication of the load and also 

equivalent to the inverse square of the distance between 

two particles. In the EM algorithm, as stated, a virtual 

load is related to each particle, but the relation for the 

particles varies during the program. Hence after relating a 

virtual load to each particle, we can calculate total force 

using a law similar to Coulomb’s law. The function CalcF 

is used in the general form of the EM algorithm in line 5 

to calculate the imposed force on each virtual particle by 

other particles in the group. 

 

Thus we first relate the virtual load q
i
 to the nth particles 

in function Calc F(). The value of q
i
 will be defined 

according to xi as follows: 

 

1
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( ( ) ( ))
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m
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k

f x f x
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f x f x
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 
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 

 
 



               (5) 

                                               

When 1,...,i m , Equation (5) shows the optimized 

related virtual load to each particle. Now to calculate the 

total imposed force on the i
th 

particle, i.e F
i
 that is equal to 

the total force from other particles on this particle. It is 

necessary to calculate the force from j
th 

particles i.e. F
i
 

and we use Equation (6), (Birbil and Fang, 2003). 
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Then in calculating F
i
 we will have: 

1,...,
m

i i

j

j i

F F i m


                        (7)                                                                       

The overall results of the above Equations show that 

particles that are less optimized are always observed by 

the particles with higher optimization states. 

 

 Displacemente of the particles using force vectors 

The function Move () in the EM algorithm expresses the 

displacement of particles in the case. If the domain is 

shown by it will be equal to a random variable with 

homogeneous distribution in time [0,1]. It can be 

calculated by Equation (8). 
i

i i

i

F
x x R

F




                              (8)                                                                

Where R


is a vector defining the permissible limit of 

variation of each variable. In other words, this vector 

guarantees that the obtained result (8) is always in the 

permissible limit [ ]k kl u . 

 

OPTIMAL CONTROL THE THEORY 

 

This Equation is derived from the optimum linear control 

of the 2nd method by Liapanov. We will assume in this 

method that t  and the starting time is zero.  

 

If we want to briefly express this technique in Equations 

(9 to13), we will have the following (Chen, 1984): 

( ) ( ) ( )x t Ax t Bu t                               (9)                                           

 

Defining the performance index with the aim of 

minimizing:                                          
   

       
0

TxT t Px t x t Ru t dt


                  (10) 

                                    

System input will be the following relation: 

 

   u t Kx t                                    (11) 

 

The matrix stable construction will be: 

 
1 TK R B P                                   (12) 

 

P in this Equation is an undefined symmetrical positive 

real matrix that is obtained from the following algebraic 

Equation: 

 
1 0T TPA A P PBR B P Q                  (13)                                   

 

R and Q are also symmetrical real definite matrixes. 
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SIMULATION RESULTS 

 

In this section, it's shown system response without PSS 

and then the effect of adding SA PSS, PSO PSS that are 

reviewed and GA PSS, EM PSS and TOCM to the single 

machine is connected to infinite bus through a 

transmission line, in the five different loading. The 

operating points were selected randomly and are given in 

next section.  

 

 Results of the simulation without PSS 
The eigenvalues are found by transferring the transfer 

function of the system into state space model. Therefore, 

the eigenvalues of the system for the five operating points 

without PSS are given according to Table 1. 

 

From the Table 1, it is clear that the system is unstable, 

because eigenvalues are on the right half of j  axis.  

 

Table 1. Eigenvaluse of the five systems without PSS.  

 

Points Eigenvalues of the system without PSS 

a +0.4981 

±6.6288i 

-33.6805 -17.3597 

b +0.7513 

±7.3702i 

-11.5526 -39.9942 

c +0.0283 

±5.3580i 

-25.0504 

+9.182i 

-25.0504 

 -9.182i 

d +0.1936 

± 6.9157i 

-10.7786 -39.6528 

e +0.5410 

±61171i 

-21.6341 -29.4919 

 

Table 2. Eigenvaluse of the five systems with GA PSS. 

 

Points Eigenvalues of the systems with GA PSS 

a -

44.3170 

-16.223 

±40.022i 

-0.1763 

±2.8070i 

-

0.7076 

b -

44.3812 

-16.3375 

±28.22i 

-0.8261 

±3.7060i 

-

0.7272 

c -

34.4415 

-21.4432 

±13.80i 

-0.5644 

±4.7443i 

-

0.7251 

d -

44.1266 

-16.046 

±18.051i 

-1.6143 

±4.2184i 

-

0.7464 

e -

44.0012 

-17.0788 

±39.40i 

-0.1441 

±4.4916i 

-

0.7014 

 

Table 3. Optimized PSS parameters with GA. 

 

Point 

Optimized PSS parameters 

for operating point a 

KSTAB T1[s] T2[s] TW[s] 

a 9.56012 0.13512 0.030 1.40 

Table 4. Eigenvaluse of the five systems with EM PSS. 
 

Points Eigenvalues of the systems with EM PSS 

a -36.167 

±4.106i 

-4.2655 -0.298 

-5.583i 

-0.298  

+5.583i 

-0.7022 

b -32.0422 -27.6162 -0.3103 

±10.01i 

-5.0313 -0.7202 

c -25.031 

±6.024i 

-19.6934 -0.864 

-6.110i 

-0.864 

+6.110i 

-0.7301 

d -32.651 

±0.631i 

-1.003-

7.812i 

-1.003 

+7.812i 

-3.2856 -0.7891 

e -29.04 

±7.0431i 

-10.0612 -0.7031 

-8.01i 

-0.7031 

+8.01i 

-0.7403 

 

 Results of the genetic algorithm 
In this simulation, the number of pairing strings is 20, 

elite children are 2, and the percentage of produced 

strings in the interesting method is 80% of the remaining 

strings. 
 

After effect of the genetic algorithm on the system, 

according to the objective function F for five different 

kind of operating, we observed stabilization and the 

transfer of unstable poles to suitable places in Table 2. 

From Table 2 it is clear that the rotor oscillations are 

damped and the above results shows that all the 

eigenvalues of the system were located in the left half of 

the j  axis to make the stable system.  

 

For example, Table 3 shows the optimal values of PSS 

parameters obtained by the G-algorithm for operating 

point a. 
 

 Results of the electromagnetism-like 

In this simulation, we have chosen the values of 

parameters  and LSIter to be 0.01 and 10, respectively.   

   

We have also done the simulation by 40 particles and 

assuming MaxIter = 0. Hence after implementing the EM 

algorithm on the system, according to the objective 

function F for five different kind of operating, we can 

observe stability and the transfer of unstable poles in 

Table 4. 

 

Table 5. Opimized PSS parameters with EM.  
 

Point Optimized PSS parameters for operating point a 

KSTAB T1[s] T2[s] TW[s] 

a 14.2479 0.11713 0. 0378 1.0113 
 

Here also, all the eigenvalues of the system were located 

in the left half of the j  axis.  

 

The system is stable for this reason. 

 Also, Table 5 shows the optimal values of PSS 

parameters obtained by the EM algorithm for operating 

point a. 
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 Results of the optimal control the theory 

In this simulation, we have chosen the values of 

parameters Q and R according to Table 6.   

 

Remarkably, these parameters are chosen through trial 

and error. 

 

Thus after replacements and required calculations in the 

Equations (9 to 13), the stabilizer matrixes K are obtained. 

By using matrix Ki in the Equation ( ), 1,...,5i i iA B K i   

we can observe the eigenvalues of this process, for the 

five operating points, according to Table 7. From this 

Table, it is obvious that, all the eigenvalues obtained from 

this method are more optimal than the other methods. 

Also, Equations (14) and (15) show the matrixes of 

stabilizer Ki and ( )i i iA B K  for operating point a. 

 

Table 6. The values of R and Q for TOCM.  

 

Points R Q 

a 1 Diag[10  20  1  1  1  20] 

b 1 Diag[100  10  1  1  1  10] 

c 1 Diag[10  10  1  1  1  10] 

d 5 Diag[100  1  1  1  1  10] 

e 5 Diag[10  1  1  1  1  10] 

 

Table 7. Eigenvalues of the five systems with TOCM. 

 

Points Eigenvalues of the systems with TOCM/LQR 

a -40.1801 -18.422 

±12.868i 

-3.5439 

±11.65i 

-1.5819 

b -44.0021 -16.350 

±12.717i 

-4.2089 

±15.426i 

-1.7694 

c -43.6144 -16.2967 

±12.98i 

-4.043 

±15.4581i 

-1.8506 

d -44.2688 -16.617 

±13.725i 

-3.5421 

±8.1160i 

-1.4303 

e -44.1687 -16.7086 

±13.68i 

-2.9514 

±7.4543i 

-1.1740 

 
3.4986 0.3245 0.0058 0.0677 0.2312 0.0797

0.3245 0.0575 0.0003 0.0034 0.0251 0.0229

0.0058 0.0004 0.0574 0.0178 0.0942 0.0025

0.0677 0.0034 0.0179 0.0206 0.0578 0.0112

0.2312 0.0251 0.0943 0.0578 0.7142 0.2168

0.0797 0.0230 0.002

aK 

5 0.0112 0.2168 0.2834

 
 
 
 
 
 
 
  
 

                 (14) 

 

7.1554 0.1305 1.4442 0.2312 0.0797

443.249 0.4740 1.2487 4.42001 0.0251 0.0229

65.7236 0.3851 1.9137 23.002 0.0942 27.3147

65.8793 6.698 19.417 45.083 0.0578 0.0112

0.2312 1.062 1.268 0.0578

0

1

0.898

a a aA B K 

    

  

  

   

    



.4284 0.2169

0.0797 4.863 5.480 0.0112 26.7528 30.586

 
 
 
 
 
 
 
       

       (15) 

 Comparison of optimization methods 

In this part, it's shown a comparison between the 

optimization methods in Figures 5 (1, 2, 3, 4, 5). 

 

These figures show damping rate of the system for the 

five operating points due to the optimization methods in 

the angular gain and also show response of the system 

with PSSs different for different operating conditions in 

the single machine connected to infinite bus system. It 

indicates simultaneous improvement in the response of 

the five systems by TOCM.   

 

So, tuning of PSS parameters by using TOCM is more 

optimal than other methods.  

 

Also, the run-time of programs can be compared in Table 

8. It is obvious that, the TOCM uses less run-time than 

other methods.  

 

Table 8. Comparison of the programs run-time. 

 

Points Run-time of programs in Second 

GA EM SA PSO TOCM 

a 26.3 3.41 19.86 4.52 1.3 

b 9.6 2.32 4.8 7.06 1.0 

c 6.54 2.17 5.43 4.33 1.15 

d 4.83 2.0 4.04 5.43 1.04 

e 7.52 3.16 5.14 5.20 1.12 

 

In this Part, also stability the 10-machine 39-bus system 

(in Fig. 3) is investigated. For showing the effectiveness 

of the proposed PSSs over a wide range of operating 

conditions, we will create two three-phase faults at bus 29 

at the end of line 26-29 and at bus 14 at the end of line 

14-15. These faults will give more affected the speed 

deviation of Generator 9 and Generator 3 than other 

generators (Jeevanandham and Gowder, 2009). For 

showing the effectiveness of the optimization methods 

and compare them, the behavior of these methods against 

the faults are illustrated in Figures 6(1, 2). From this 

comparison, it is clear that damping rate of the system in 

the speed gain in the TOCM in is more optimal than other 

methods. 

 

CONCLUSION 

 

In this paper, is done a comparison of ways to design PSS 

using the optimizing methods of Genetic, 

Electromagnetism-Like, the Optimized Control Theory 

and Simulated Annealing, Particle Swarm Optimization 

that are expressed in Jeevanandham and Gowder (2009) 

for a single machine connected to infinite bus system and 

10-machine 39-bus. After performing algorithm and 

affect of response on the angular gain of system for the 

five operating points (a, b, c, d, e) according to Figures 5 

(1, 2, 3, 4, 5), and also for two three-phase faults are 
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created according to Figures 6(1, 2) observed that the 

system in the Theory of Optimal Control method goes to 

damping mode faster than other methods inspired by 

nature, because it's based on strong mathematics, in 

optimization, and defines the system optimizing trend. 

Therefore defining R and Q optimized matrixes; the 

responses will be rather more appropriate and optimized. 

 

APPENDIX 

 

Operating points:  a: P=0.9, Q=0.3      b: P=0.8, Q= -0.1      

c: P=0.5, Q=0.5  d: P=0.6, Q= -0.2       e: P=1, Q=0.6 

Machine (p.u):   X 1.7 0.254 X 1.64d d qX   

 

 

120 [ ] 5.9 2.36 0do D
radb T s H s K

s
       

Transmission line (p.u):  re=0.02        xe=0.4 

 
Fig. 5-1. System response with PSS for operating point a 

 
Fig. 5-2. System response with PSS for operating point b 

 
Fig. 5-3. System response with PSS for operating point c 

 
Fig. 5-4. System response with PSS for operating point d 

 

Fig. 5-5. System response with PSS for operating point e 

Fig. 5. Response of  the single machine connected to infinite bus system at the different operating points 
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Exciter and stabilizer: KA=400      KE= -0.176       KF=0.026   TA=0.060s       TE=0.95s        T1=0.1 - 1.5s        T2=0.02 - 

0.15s TF=1.0s          TW=1 - 20s      

 

 List of parameters: 

 

F Objective function 

  Closed loop eigenvaluse 

TW, T1, T2, KSTAB Parameters of power system 

stabilizer 

K1 to K6 Constants of the system 

P Active power 

Q Reactive power 

KD Torque coefficient of the damping 

KS Torque coefficient of 

synchronization 

H Constant inertial 

s Laplace operator 

0  Synchronous machine speed 

r  Rotor speed of the generator 

  Power angle of the generator 

fd  Flux away of excitation circuit 

mT  Input torque of mechanical 

fdE  Output voltage of excitation 

eT  Electrical torque 

K Stabilizer matrix 

R and Q (in 

TOCM) 

Matrixes of real symmetrical 

P (in TOCM) The undefined symmetrical positive 

real matrix 
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Fig. 6-1. Response of the G9 for fault 

 
Fig. 6-2. Response of the G3 for fault 

Fig. 6.  Response of generators 9 and 3 against the faults in the 10-machine 39-bus system  

 


