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ABSTRACT 

 

In this paper, we reformulated the Linear Sigma Model Lagrangian density using fractional calculus by the left-

right Riemann-Liouville fractional derivatives. We also determined fractional Euler-Lagrange and fractional 

Hamiltonian equations resulting from the Linear Sigma Model Lagrangian density. We found that the classical 

results are taken as a specific case of the fractional formulation for Euler-Lagrange and Hamiltonian equations. 
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INTRODUCTION  

 

One way for generalization of ordinary integration 

and differentiation to random order is done by 

Fractional calculus (Oldham and Spanier, 1974; 

Podlubny, 1999; Hilfer, 2000; Miller and Ross, 

1993).  Nowadays, this subject is very active because 

it is can be used in many applications in different 

areas, such as biology, mathematics,, chemistry, 

control theory, and economics (Malinowska, 2013; 

Agrawal, 2002; Muslih et al., 2010; Laskin, 2000; 

Laskin, 2002; Agrawal, 2007; Jaradat, 2011). The 

model of linear sigma can be used for one gain some 

imminent into Quantum Chromodynamics in an 

effective low-energy theory approach (Ali, 2013). 

The using of linear sigma model, provides a helpful 

discussion on how spontaneous chiral symmetry 

breaking in strong interactions (Tamenaga et al., 

2007). 

 

Agrawal (2007) proposed generalized Euler Lagrange 

equation. Moreover, transversality conditions for 

fractional variational problems are recognized as 

Riesz fractional terms derivative. Baleanu and 

Agrawal (2006) developed a fractional Hamiltonian 

formulation for dynamical systems in terms of 

fractional Caputo derivatives. Huttner and Barnett 

(1992) proposed a canonical quantization approach 

that can be applied in the electromagnetic field.  Their 

approach is implemented by using microscopic model 

in dispersive and lossy linear dielectrics. In this 

model, the medium is considered as a set of 

interacting matter fields. Gray (1982) presented a 

gauge invariant approach to quantize the 

electromagnetic Lagrangian density. The proposed 

approach is done by  interpreting the  Fourier  

coefficients  of  the  magnetic  induction  field B and 

the coefficients of the electric  field  E as  generalized 

coordinates and conjugate momenta, respectively.  

Furthermore, Rabei et al. (2007) obtained the 

Hamiltonian equations of motion for continuous and 

discrete systems by using the formulation of Euler- 

Lagrange equations from variational problems. 

Jaradat et al. (2010) reformulated the free 

electromagnetic Lagrangian density using the 

radiation (coulomb) gauge, and Lorentz gauge. They 

also obtained fractional Euler-Lagrangian equations 

resulting from these Lagrangian densities, and then 

found fractional Hamiltonian density in general form. 

Al–Oqali (2015) obtained fractional Euler-Lagrange 

equations and fractional Hamilton’s equations for 

Higgs field using the Left-Right Riemann-Liouville 

fractional derivative . 

 

This work aims to reformulate the Linear Sigma 

Model Lagrangian density in fractional form in terms 

of the Riemann-Liouville fractional derivative, and to 

obtain equations of motion. We also compare 

equations of motion obtained with the Hamilton's 

equations of motion in fractional form . 

 

The remaining of this paper is organized as follows; 

the following sections present some basic definition 

of the Riemann-Liouville fractional derivative and the 

fractional Linear Sigma Model Lagrangian density. 

The next section presents the fractional Euler-

Lagrange equations. After that, the fractional 

Hamiltonian is constructed for the system and the 

Hamiltonian equations of motion are obtained. 

Finally, the last section dedicated to our conclusions. 

 

BASIC DEFINITIONS  

   

In this part of the paper, we briefly present some 

fundamental definitions used in this work. The left 

and right Riemann- Liouville fractional derivatives 

are defined as follows (Diab et al., 2013):  

The left Riemann- Liouville fractional derivative  
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The right Riemann- Liouville fractional derivative 

 

 
Here α is the order of derivative such that n-1< α ≤ 

n and  represents the gamma function. If α is an 

integer, these derivatives become the usual 

derivatives.  

 

 
 

Fractional Linear Sigma Model Lagrangian 

Density 

 

The Lagrangian density of the linear sigma model has 

the form (Gross, 1993) 

 

 
        Where  

                                 

  

This Lagrangian contains three parameters: one 

fermion-meson coupling constant , a meson mass 

, and a  type meson-meson interaction strength 

 .    

 

Now the Lagrangian density becomes:     

 

 
             

 Use  the  definition  of  left  Riemann  –  Liouville  

fractional  derivative,  the fractional Linear Sigma 

Model Lagrangian Density takes the form 

 

 
Fractional Euler – Lagrange Equations for Linear 

Sigma Model  

 

Consider the action function of the form 

 

 
 

Calculating   form above equation we obtain,  

 

 
 

Using   

and  

 

We obtain, 

 

 
 

Integrating the (fifth, sixth, seventh and eighth) terms 

by parts give 

 

 
This lead to Euler – Lagrange equations.  

 

 
So the equations of motion become 

 

  

 

 

(5) 

(19) 

(20) 

(17) 

(10) 

(11) 

(12) 
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For   we have  and the equations 

(17, 18, 19, and 20) reduces to standard Euler – 

Lagrange equation. 

 

 

 

 
So the equations of motion become,  

 

 

 

 
 

Fractional Hamiltonian Formulation 
To  construct  the  fractional  Hamiltonian  equation  

within  Riemann  –Liouville fractional derivative  

from  fractional  Linear Sigma Model Lagrangian 

density, we consider the Lagrangian depending on 

fractional time derivatives of coordinates in the form 

 

 
The Hamiltonian depending on the fractional time 

derivatives reads as,  

 
 

Where 

 
Thus, the total differential of Hamiltonian function 

reads as 

 
and   

 
 

By  comparing  equation  (24)  with  equation  (25)  

we  get  the  following Hamilton’s equation of motion 

 
 

 

 

 
 

The conjugate momenta define as:  

  ,  ,   ,  

  

(22) 

(23) 



Canadian Journal of Pure and Applied Sciences 3806 

 After some mathematical manipulation we get the fractional Hamiltonian density 

So the equations of motion becomes 

 

 

 

 

 

 

 

 

 

 

 

 

 
As  we obtain 

 

CONCLUSION 

 

Linear Sigma Model Lagrangian can be written in 

fractional form in four- dimensional using Riemann- 

Liouville fractional derivatives. 

 

For a given Lagrangian density we observed that both 

fractional Euler Lagrange and fractional Hamiltonian 

equations generate the same results in the two 

procedures that are used in this paper. The classical 

results are generated as a specific case of the 

fractional formulation. 
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