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ABSTRACT 

 

The present study deals with the investigations of the recursive versions of well known code word lengths due to 

Campbell (1965) and Kapur (1988). It has been proved that the recursive codes for both the lengths are better than 

their original code from redundancy point of view and the comparison criterion is the average redundancy taken over 

the set of all n -tuple distributions. Furthermore, it is shown that when symbol probabilities are arranged in 

descending order, the recursive versions of both the codes provide much better results. The methodology adopted for 

this recursive approach involves the use of programming through Matlab and Simulation techniques. 
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INTRODUCTION 

 

It is well known phenomenon that while dealing with 

source coding,  the code designer is usually supposed to 

be concerned with the reduction in the code rate between 

the source and the  destination whereas an important 

problem in communication theory is to find the lengths of 

the prefix-free code words which minimize the 

redundancy for a given source. The absolute redundancy 

is defined as the number of bits used to transmit a 

message lesser the number of bits of the actual 

information in the message. This idea comes from the fact 

that in the entire literature of source coding theorems, the 

mean codeword length is lower bounded by the entropy of 

the source and it can never be less than the entropy of the 

source but can be made closer to it.  

The main objective in the theory of source coding is to 

encode the source that produces symbols 

 , 1,2,...,iX x i n   with 

probabilities  , 1,2,...,iP p i n  . The symbols 

, 1,2,...,ix i n  are encoded to a codeword 

, 1,2,...,ic i n of length , 1,2,...,il i n  using the D  

letters of the alphabet. By making use of Kraft’s (1949) 

inequality, which is necessary and sufficient condition for 

the code to be uniquely decipherable given by  
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Shannon (1948) investigated the first source coding 

theorem and proved that the entropy of the source 

provides a lower bound to the average number of code 

symbols needed to encode each source symbol and 

proved the following result:         
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length. 

In case of Shannon’s code, 

log , 1,2,...,i D il p i n     . 

Later, Campbell (1965) and Kapur (1988) proved 

the source coding theorems for their own 

exponentiated mean codeword lengths in the form of 

following inequalities 
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Kapur’s (1998) mean codeword length and 

 
1

1
log , 1, 0

1

n

D i

i

H P p 

  
 

  


 is Renyi’s 

(1961) measure of entropy. The lengths used in 

Campbell (1965) code and Kapur (1998) code are 

given by 
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and log , 1,2,...,K
i D il p i n      respectively. 

Chapeau-Blondeau et al. (2011) have described a 

practical problem of source coding by assigning a specific 

role to Renyi (1961) entropy and investigated an 

important relation stressing that Renyi’s entropy emerges 

at an order differing from the traditional Shannon’s 

entropy. Another interesting extension to the source 

coding theorem based on Shannon entropy was presented 

by Chapeau-Blondeau et al. (2010) and motivated by the 

development, generalized the same extension for Renyi’s 

entropy. Moreover, the authors demonstrated another 

lower bound realized by the Tsallis (1988) entropy to the 

generalized codeword length and also expressed the 

optimal codeword lengths from the escort probability 

distributions. Parkash and Kakkar (2012) investigated and 

introduced two new mean codeword lengths  ,L    and 

 L  by studying the desirable properties of a measure of 

typical code lengths and consequently, proved two new 

noiseless coding theorems subject to Kraft’s inequality. 

Some other related work concerned with the coding 

theory have been provided by Sharma and Raina (1980), 

Ramamoorthy (2011), Tu et al. (2011) and Koski and 

Persson (1992) etc. 

Recently, Baer (2011) provided some new lower and upper 

bounds for compression rate of binary prefix codes 

optimized over memory less sources with the objective to 

explore exponential average length, maximum point wise 

redundancy and exponential average point wise 

redundancy. With the fulfilment of their objectives, the 

author provided necessary and sufficient conditions for the 

shortest codeword to be a specific length. Ye and Yeung 

(2002) took the modified version of the Shannon code 

whereas Drmota and Szpankowski (2004) proposed a 

generalized Shannon code and minimized the maximum 

redundancy to prove its optimality. 

 Mohajer et al. (2012) studied the redundancy of Huffman 

(1952) code particularly for the sources for which the 

probability of one of the source symbols is known. For 

memory less sources with a large alphabet size, Narimani 

et al. (2013) studied the performance of optimal prefix-free 

encoding, the findings of which made the study of 

redundancy of the Huffman code for almost all sources 

with a large alphabet size whereas Narimani et al. (2014) 

compared the performance of Shannon code with that of 

corresponding well known Huffman code. Related with the 

above study of redundancy, Parkash and Kakkar (2014) 

obtained the optimum probability distribution with which 

the messages should be delivered so that the average 

redundancy of the source is minimized by considering the 

case of various generalized mean codeword lengths.  

It is generally felt that for efficient source coding, 

one has to minimize the redundancy prevailing in 

the system. The present communication is a step in 

the direction providing recursive versions of various 

existing codes. To achieve this goal, we make use of 

the necessary and sufficient condition for unique 

decipherability of a code due to Kraft’s (1949) in 

which Kraft’s sum is generally less than one and it 

can be made closer to 1 if we reduce the length of 

some code words in the mean codeword length. In 

the sequel, we have considered the well known 

codes due to Campbell (1965) and Kapur (1998) to 

justify our claim. 

2. RECURSIVE VERSIONS OF CAMPBELL 

AND KAPUR CODE 

In the process to find the recursive version of 

Campbell’s (1965) code, we consider the set of 

constraints  
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which leads to Kraft’s inequality when summed over 

i , 1 i n  . 

In order to introduce recursivity into Campbell’s 

code, we consider the following optimization 

problem: 

Minimize the codeword length 
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subject to constraint 
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 From (2.3), we have  
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Keeping in view (2.5), we define the Recursive 

Campbell code as follows: 

 log ' , 1RC

i D i il P i n                            (2.6)                    

where 1 0  and  
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It is to be noted that  1 2, ,...,RC RC RC

nl l l is the 

suboptimal solution of (2.2) and hence of original 

Campbell (1965) problem. 

Keeping in view the constraint (2.3), we have 0i   

for 1 i n  and this gives  
RC C

i il l .                                                              (2.7)                                                             

From (2.7), we further have 
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   , ,RC CR L P R L P                                                   (2.8) 

where  ,RCR L P is the redundancy of Recursive 

Campbell code and  ,CR L P is the redundancy of 

Campbell code for any distribution P . Thus 

 0 , 1RCR L P  .                                                        (2.9) 

In case of recursive version of Campbell code, Kraft’s 

inequality is satisfied only when il , 1 i n  satisfies (2.5). 

The motivation behind the approach used is to make the 

Kraft’s sum closer to
1

1 '
n

j

j

P


 . Thus, from (2.8) and 

(2.9), we have    0 , , 1C RCR L P R L P      

 

But, this inequality does not give us an idea about the 

actual difference between redundancy of Campbell code 

and Recursive Campbell code. To compare the 

performance of these two codes, the criterion is 

redundancy and we assume it as a random variable 

following uniform distribution on the set of all sources 

having n symbols and use its expected value for 

evaluating the performance of codes. The performance of 

a particular code is considered to be better if its average 

redundancy is lower as compared to the average 

redundancy of other codes and we consider a uniform 

distribution because of the reason that all sources are 

assumed to be equally important.                                                                       

An important factor to be considered while evaluating the 

performance of code is the order of probabilities, that is, 

in what order should the probabilities be arranged while 

computing Recursive Campbell (RC) code. So, we 

consider another two codes, the Recursive Campbell 

Ascending (RCA) code and the Recursive Campbell 

Descending (RCD) code. When the RC code is applied on 

the probabilities arranged in ascending order, we call it 

RCA code and when applied on the probabilities arranged 

in descending order, we call it RCD code. We will now 

compare the average redundancy of RCA, RCD and RC 

code with the Campbell code for the purpose of 

finding better results. 

 For comparison purposes, we will make use of 

simulation technique through Matlab. First of all, we 

will generate the n tuple distributions and for  

generating a single n tuple distribution, we will use 

the following steps in the Matlab (Devroye, 1986.).  

 

1. Generate 1n  values 1 2 1, ,..., ny y y  from the 

uniform distribution using the command rand 

[1, ]n . 

2. Let 0temp  and 1i  . 

3. For 1i  to 1n   

         1 1 1n i
i ip temp y     

       itemp temp p  . 

4. Then
1

1

1
n

n j

j

p p




  . 

5.  1 2, ,..., np p p  is the required output. 

In this way, different n  tuple distributions can be 

generated, and by the use of these distributions, we 

calculate measure of entropy and mean codeword 

lengths for each code (Campbell, RC, RCA, RCD 

code) providing the computations of redundancy and 

consequently, average redundancy for each code.  

Figure 1 shows the average redundancy as a function 

of n for each of the four codes for 200n   

and 2  . For a single value of n , average 

redundancy is calculated for 410 random n  tuple 

distributions which were generated through 

simulation as mentioned in the above steps. From 

figure 1, it is clear that all the recursive versions of 

Campbell code are better than Campbell code.  

Further, results are even better if the probabilities are 

arranged in descending order, that is, RCD code, 

thus improving the performance of Recursive 

Campbell code. 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 1. Average redundancy as a function of n for each of the four versions of Campbell’s code for 410 random 

n  tuple distributions and 200, 2n    
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For each of the four codes, average redundancy for 

200n   for 410 random n  tuple distributions is 

shown in Table 1. 

 

Table 1. Average redundancy in case of Campbell code 

and its recursive versions for 200n  , 3  and 
410 random n  tuple distributions 

 

Campbell 

Code 

Recursive 

Campbell 

Code (RC) 

Recursive 

Campbell  

Ascending 

Code 

(RCA) 

Recursive 

Campbell 

Descending 

Code (RCD) 

 

0.4820 

 

0.2337 

 

0.1054 

 

0.0229 

 

 

 

 

 

Further, from Figure 2 and 3, it is observed that curves 

get distorted if we take lesser number of n  tuple 

probability distributions but the basic result remains the 

same, that is, all the recursive versions of Campbell 

code are better than Campbell code and results are even 

better if the probabilities are arranged in descending 

order improving the performance of recursive 

Campbell code. In Figure 2, 310 random n  tuple 

distributions are taken and in Figure 3 210 random 

n  tuple distributions are considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Average redundancy as a function of n for each of the four versions of Campbell’s code for 310 random 

n  tuple distributions and 200, 2n    

 
Fig. 3. Average redundancy as a function of n for each of the four versions of  Campbell’s code for 

210 random n tuple distributions and 200, 2n    
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Figures 1, 2 and 3 reveal that the greater the number of 

n  tuple probability distributions, better is the vision 

about the recursivity.  

On similar lines as in the case of Campbell’s (1965) 

code, if we introduce recursivity into Kapur’s (1998) 

code, we get the following results 

 log , 1RK

i D i il p i n                               (2.10) 

where  

1 0  and  
1

1

, 1j

i
l

i j

j

p D i






   . 

Here also, we compare the performance of four codes 

Kapur (1998) (K) code, Recursive Kapur (RK) Code, 

Recursive Kapur Ascending (RKA) Code and 

Recursive Kapur Descending (RKD) Code by taking 

into consideration average redundancy of each code. 

Figure 4 shows the average redundancy as a function of 

n for each of the four different versions of Kapur’s 

codes for 200n   where average redundancy is 

calculated for 410 random n  tuple distributions for a 

single value of n . From Figure 4, it is clear that all 

recursive versions of Kapur code are much better than 

their original code and further RKD code gives best 

results. For each of the four versions of Kapur’s code, 

average redundancy for 200, 2n    for 410 random 

n  tuple distributions is shown in Table 2. 

 

 
Fig. 4. Average redundancy as a function of n for each of the four versions of  Kapur’s code for 410 random 

n  tuple distributions and 200, 2n    

 

Table 2. Average redundancy in case of Kapur code 

and its recursive versions for 200n  , 

2  and 410 random n  tuple distributions  

 

 

Kapur 

Code 

Recursive 

Kapur 

Code (RK) 

Recursive           

Kapur 

Ascending 

Code 

(RKA) 

Recursive 

Kapur 

Descending 

Code 

(RKD) 

 

0.5285 

 

    0.2203 

 

 

    0.1211 

 

 

0.1118 

 

Similarly, as in case of Campbell’s code, it may be 

observed that the main difference between the 

recursive versions of Kapur’s (1988) code and the 

original Kapur code will remain the same for any 

number of n  tuple probability distributions but one 

gets clear picture about recursivity if the number of 

n  tuple probability distributions are greater as can be 

seen from Figures 4, 5 and 6. 
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Fig. 5. Average redundancy as a function of n for each of the four versions of Kapur’s code for 310 random 

n  tuple distributions and 200, 2n    

 

 
Fig. 6. Average redundancy as a function of n for each of the four versions of  Kapur’s code for 210 random 

n  tuple distributions and 200, 2n  
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CONCLUSION 

 

After the investigations of the recursive versions of the 

Campbell code (RC) and Kapur (RK) code, we have 

shown that the recursive versions of both the codes are 

better than their original code in terms of redundancy 

which is considered as criteria for the comparison 

among the codes.  Graphically, it can be easily seen 

that 410 random n  tuple distributions give clear 

picture about the recursivity as compared to 
310 random n  tuple distributions and 210 random 

n  tuple distributions, concluding that greater the 

number of n  tuple distributions, better is the vision 

about recursivity. The numerical illustration provided 

proves that the average redundancy in case of 

Campbell and Kapur code lies in the vicinity of 0.5 

whereas in case of their recursive versions, the average 

redundancy approaches towards zero. Proceeding on 

similar lines, the average redundancy of the other codes 

can be improved by the recursive approach. 
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