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ABSTRACT 

  
In this paper a general dynamic Reynolds equation of sliding-squeezing surfaces with couple stress fluids is derived for the assessment of 
static and dynamic characteristics of porous bearings. The analysis takes into account of transient squeezing action effects and velocity slip 
at the porous/fluid film interface by using the modified B-J slip boundary conditions. The numerical solution of two-dimensional plane 
inclined porous slider bearing is illustrated. Using the perturbation technique two Reynolds-type equations governing the steady 
performance and the perturbed characteristics are obtained. The steady and perturbed characteristics are then numerically calculated by 
using finite-difference technique. From the numerical results computed it is observed that there exists a critical value for the profile 
parameter at which the steady-state load and dynamic stiffness coefficients attains maximum. Further it is found that this critical value of 
the profile parameter is a function of permeability parameter. The effects of couple stresses provide an improved performance for both 
steady-state, dynamic stiffness and damping characteristics. This effect is more accentuated for the porous bearings with larger values of 
aspect ratio. 
 
Keywords: Numerical solution, full reynolds equation, steady-state, porous, slider bearing, couple stress. 

 
INTRODUCTION 
 
Porous bearings have the features of simple structure and 
low cost. Porous bearings are used where non-porous 
bearings are impracticable owing to lack of space or 
inaccessibility for lubrication. The application of porous 
bearings in mounting horsepower motors include vacuum 
cleaners, coffee grinders, hair driers, saving machines, 
sewing machines, water pumps, record players, tape 
recorders, generators and distributors. Kumar (1980), 
Murti (1974a), Sanni and Ayomidele (1991), Srinivasan 
(1977) and Verma et al. (1978) have analyzed the porous 
slider bearings by using Darcy’s equation to model the 
flow of Newtonian lubricant in the porous matrix. All 
these studies assume the lubricant to be Newtonian fluid. 
In most of the modern equipments, the increasing 
velocities of rotating units, higher impact loads acting on 
supports and the application of new structural materials 
are adopted. The performance of the friction unit of a 
machine can be improved by the application of new 
bearing materials. The cintered ceramets and also the 
materials manufactured by the methods of gas-thermal 
spraying are such materials. The bearings with these 
materials operate with less noise as compared to the 
costly non-ferrous metals Akhverdiev et al. (2000). The 
hydrodynamic lubrication theory of porous bearings was 
first studied by Morgan and Cameron (1957). The 
squeeze film behavior in porous circular disc was studied 
by Murti (1974b). The centrifugal effects in hydrostatic 
porous thrust bearings studied by Gupta and Kapur 
(1979). There have been several studies of porous 
bearings such as porous slider bearings by Uma (1977) 
and porous journal bearings by Prakash and Vij (1974), 

porous squeeze films by Wu (1972). All these studies on 
porous bearings are confined to Newtonian lubricants. 
 
The use of non-Newtonian fluids as lubricant is of 
growing interest in the recent years. Most of these modern 
lubricating oils contain high molecular weight polymer 
additives as a kind of viscosity improver. These additives 
which are polymers or co-polymers are added to the base 
oils in order to prevent the viscosity variation with 
temperature, these are characterized by long chains in 
which the length of polymer chain may be a million times 
the diameter of water molecule Lahmar (2005) and these 
are classified into hydrodynamic co-polymers and 
polymethacarylates. The experimental study of Robin 
(1978) revealed that the use of oils with a higher 
concentration of viscosity index additives having low 
molecular weight is more advantageous than the use of 
lower concentration of additives with higher molecular 
weight. 
 
The conventional study of hydrodynamic bearings 
assumes that, the lubricant as a Newtonian fluid. The 
classical Newtonian continuum mechanics of fluids 
neglects the size of fluid particles. Hence several micro-
continuum theories have been proposed by Ariman et al. 
(1973) and Ariman et al. (1974) to account for the size 
effects of fluid particles, because Stokes (1966) micro-
continuum theory for the couple stress fluids is the 
generalization of classical Newtonian fluid theory and it 
accounts for the polar effects such as the couple stresses, 
body couples and asymmetric tensors. Several 
investigators used Stokes micro-continuum theory for 
couple stress fluids for the study of several bearing 
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systems Bujurke et al. (2005), Nuduvinamani et al. 
(2001a), Naduvinamani et al. (2002), Naduvinamani et al. 
(2004), Ramanaiah and Priti Sarkar (1978) and 
Ramanaiah (1979)  have been reported several advantages 
over the Newtonian lubricants. So for no attempt has been 
made to study the static and dynamic characteristics of 
porous inclined slider bearings with couple stress fluids 
by including the squeezing action of the bearing surfaces. 
Hence in this paper an attempt has been made to derive 
the dynamic modified Reynolds type equation for the 
couple stress fluids for porous slider bearings with 
squeezing action of the surfaces and detailed numerical 
analysis is presented for the two dimensional porous 
slider bearings. 
 
MATHODS 
 
The basic equations derived by Stokes (1966) for the 
motion of an incompressible couple stress fluid, in the 
absence of body forces and body moments are 

qηqµp
Dt

qDρ 42 rr
r

∇−∇+−∇=           (2.1) 

. 0q∇ =
r

          (2.2) 
where ρ  is the density, qr  is the velocity vector, p is the 
pressure, µ  is the Newtonian shear viscosity and η  is a 
material constant accounting for the couple stress 
property. The ratio 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
µ
η  has the dimensions of the length 

squared and hence the dimension of
µ
η  characterizes the 

material length of the couple stress fluid. 
A geometry for the physical configuration of the problem 
under consideration is shown in the Fig.1. It consists of 
porous slider with sliding velocity U including the effect 

of the squeezing action
h
t

∂
∂

, h1(t) is the inlet film 

thickness and the outlet film thickness is h0(t). The porous 
region is assumed to be homogenous and isotropic and the 
lubricant is incompressible couple stress fluid. Under the 
usual assumptions of the hydrodynamic lubrication 
applicable for thin films Pinkus and Sternlicht (1961), the 
equations of motion (2.1) and (2.2) take the form;  
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The relevant boundary conditions for velocity 
components are  
 
(i) At the upper solid surface (y = h) 
u = w = 0 (no slip)           (2.7a) 

v = 
h
t

∂
∂

  (squeezing velocity)      (2.7b) 

2 2

2 2 0u w
y y

∂ ∂
= =

∂ ∂
 (vanishing of couple stresses)     (2.7c) 

(ii) At the fluid porous interface (y = 0)  
     

 u = U+
1 u
s y

∂
∂

     (2.8a) 

v = -v1 (continuity of vertical component)     (2.8b) 

w = 
1 w
s y
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 (modified B-J slip condition)      (2.8c) 
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where s  
k

α
= is the slip parameter, k is the 

permeability of the porous material, α  is a non-
dimensional slip coefficient which depends on the 
characteristics of the porous material.  
 
The solution of Eqn. (2.3) and Eqn. (2.4) subject to 
boundary conditions (2.7a), (2.7c), (2.8a), (2.8c) and 
(2.8d) is given by  
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where 
µ
ηl =  and 1 

1+hs
ξ =  

Integration of continuity equation (2.6) with respect to y 
over the film thickness gives; 

∫∫
==

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

=
∂
∂

−
h

0  y

h
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udy
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By replacing the velocity components u and w with their 
expressions given in Eqn. (2.9) and Eqn. (2.10), and also 
using the boundary conditions (2.7b) and (2.8b), the Eqn. 
(2.11) gives the modified Reynolds type equation in the 
form 
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where  

( ) 2 2 3( , , ) 1 3 6 tanh 12 24 tanh
2 2

3 h hf h l   h h l l h l
l l
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        (2.13) 

 
The flow of couple stress fluid in a porous matrix is 
governed by the modified form of Darcy law which 
accounts for polar effects given by Naduvinamani et al. 
(2001b) 

*

1
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(1- ) xµ β
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       (2.14) 
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     (2.16) 

where 111 ,, wvu  are modified Darcy velocity 

components along x, y, z directions, respectively, *p  is 

the pressure in the porous region, ( ) k//  µηβ = . The 
parameter  represents the ratio of microstructure size to 
the pore size. For the flow of couple stress fluid in the 
porous matrix 1β << . Due to continuity of fluid in the 

porous matrix, the pressure *p  satisfies the Laplace 
equation 
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Fig.1. Physical geometry of porous slider bearing  
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Fig.2. Physical geometry of porous plane inclined slider bearing 
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Integrating with respect to y over the porous layer 
thickness H and using the boundary condition of solid 
backing 
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∂ 0

*

y
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0*
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Assuming the porous layer thickness H to be very small 
and using the continuity condition of pressure 
( *)p  p= at the porous interface (y = 0), Eqn. (2.18) 
reduces to 
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then the velocity component 1v  at the interface ( y = 0) is 
given by 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂
∂

β−µ
−== 2

2

2

2

01 )1( z
p

x
pkHv y

     (2.20) 

Substituting Eqn. (2.20) in Eqn. (2.12), the Dynamic 
Reynolds equation is obtained in the form 
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Introducing the non-dimensional quantities ; 

m0
m03

m0

2
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m0 h
ll, shs, 

h
kHψ, 

B
zz, 

L
xx, 

L
Utt ,

LUµ
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h
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   (2.22) 

After introducing the non-dimensional quantities, the 
dynamic Reynolds equation for the porous slider bearings 
can be expressed in a non-dimensional form as 
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and 11s = /  s . 
 
The last term in the Eqn. (2.23) is approximated with 

1( )h s−  as ( )1 /s h  is small. 

 
In the limiting case 0 →ψ  and 1 0s →  Eqn. (2.23) 
reduces to the solid case studied by Lin et al. (2003). 
 
POROUS PLANE INCLINED SLIDER BEARING 
 
A schematic diagram of the porous plane inclined slider 
bearing with squeezing action is shown in the fig. 2.  
 
To study the static and dynamic characteristics of the 
porous plane inclined slider bearing, the film thickness is 
separated into two parts: the minimum film thickness 

)(thm  and the slider profile function )(xhs  
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Fig.3. Grid point notation for film domain 
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Fig. 4. Non-dimensional steady-state pressure 0P  for 

different values of l  with  =0.01ψ , = 0.75 λ , 
 = 0.3β and  = 1.5δ  
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a   is the slider-profile parameter  
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Fig. 5. Non-dimensional steady-state pressure 0P  for 

different values of ψ  with  l =0.1 , = 0.75 λ , 
= 0.3β and = 1.5δ  

 
The steady and dynamic characteristics of the porous 
bearings are obtained by using the perturbations in 0mh . 
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The minimum film thickness and the local film pressure 
are assumed to be of the form 

0 11 ,it it
mh e    p p p eε ε= + = +              (3.2) 

where ε  is the perturbation amplitude and is assumed to 

be small and 1−=i  

Substituting into the dynamic Reynolds-type equation 
(2.23) and neglecting the higher order terms of ε , the two 
Reynolds-type equations responsible for both steady-state 
pressure and the perturbed film pressure obtained are 
 
 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

1s1s

sW

sW

l
l
l

l
  =0(no-slip)       =0.5(slip)

           = 0(Newtonian)
           =0.05 
           =0.1
           =0.15
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The boundary conditions for the steady and perturbed film 
pressure are 

0 0 1 0 10p =    at x = ,  x = , y = , y =       (3.7) 

0 0 1 0 11p =    at x = ,  x = , y = , y =       (3.8)  
 
The modified Reynolds equation will be solved 
numerically by using a finite difference scheme. Fig.. 3 
shows the film domain divided by grid spacing. 
 
In finite increment format, the terms in the Eqn. (3.3) and 
Eqn. (3.4) can be expressed as 
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Substituting these expressions into the steady-state and 
perturbed Reynolds equations (3.3) and (3.4), we get 
 

0 , 1 0 1, 2 0 1, 3 0 , 1 4 0 , 1 5i j i j i j i j i jp c p c p c p c p c+ − + −= + + + +    (3.9) 

1 , 1 1 1, 2 1 1, 3 1 , 1 4 1 , 1

6 0 1, 7 0 1, 8 0 , 1 9 0 , 1 10 0 ,

rpi j rpi j rpi j rpi j rpi j

i j i j i j i j i j

p c p c p c p c p

         c p c p c p c p c p
+ − + −

+ − + −

= + + +

+ + + + +
 (3.10) 

1 , 1 1 1, 2 1 1, 3 1 , 1 4 1 , 1 11ipi j ipi j ipi j ipi j ipi jp c p c p c p c p c+ − + −= + + + +  (3.11) 
where the perturbed film pressure has been expressed in 
terms of real and imaginary parts, 1 1 1rp ipp p ip= + . 
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 and  xzb ∆∆= / . 
 
The steady-state pressure and perturbed pressure are then 
calculated by using numerical method with grid spacing 
∆ ∆ 0.05x z= =  
The steady-state load capacity sW  and perturbed film 

force dW  are evaluated by integrating the steady-state 
film pressure and perturbed film pressure respectively 
over the film region.  
   

 ∫ ∫
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=
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s dzdxp
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which in non-dimensional form 
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where M+1 and N+1 are the grid-point numbers in the 
x and  z-−  directions respectively. 
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From the linear theory, the resulting dynamic film force 
can be expressed in terms of linearzed spring and 
damping coefficients. 

0 0( )it it it
d d m d m

dW e S h e C h e
dt

ε ε ε= − − . (3.15) 

which in  non-dimensional form  

d d dW S iC= − −  (3.16) 
where  

3 3
0 0

2 3
d m d m

d d
S h C h S    and     C
UL B L Bµ µ

= = . 

The dimensionless stiffness coefficient dS  and the 

damping coefficient dC  are obtained by equating the real 

and imaginary parts of dW  respectively as 
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( )1 ,0 0
Re( ) ∆ .∆

M N

d d rp i ji j
S W p x z

= =
= − ≈ −∑ ∑ ,              (3.17a) 

( )1 ,0 0
Im( ) ∆ .∆

M N

d d ip i ji j
C W p x z

= =
= − ≈ −∑ ∑                              (3.17b) 

 
RESULTS AND DISCUSSION 

 
To solve the steady-state and perturbed film pressures in 
the equations (3.9), (3.10) and (3.11) the mesh for the 

domain has 20 equal intervals along length and breadth. 
The coefficient matrix of the system of algebraic 
equations is of pentadiagonal form. These equations have 
been solved by using SciLab tools. 
 
 According to Stokes micro-continuum theory the new 
material parameter η  in the Eqn. (1.1) is responsible for 
the property of couple stresses. Since the dimension of 
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=l
is of length, it can be regarded as the chain length 
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of microstructure additives present in the lubricant. 
Therefore, the non dimensional couple stress parameter 

0m

ll
h

⎛ ⎞
=⎜ ⎟

⎝ ⎠

 provides the mechanism of interaction of the 

fluid with the bearing geometry.  
 
It is expected that the couple stress effects are prominent 
either when the molecular size of additives is large or the 
minimum film thickness is small. i.e. when l  is large. 

The numerical values of l  should be less than 1 for the 
validity of hydrodynamic lubrication i.e. the size of polar 
additives must be less than the minimum film thickness. 
In this paper, with the aid of the non-dimensional 
parameter l , the effect of the couple stresses upon the 
steady-state performance and dynamic characteristics of 
infinitely wide inclined porous slider bearings is studied. 
The effect of the permeability on the static and dynamic 
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characteristics of the bearings is analyzed through the 
permeability parameter 

3
0

k

hm

⎛ ⎞
δ⎜ ⎟ψ =

⎜ ⎟⎜ ⎟
⎝ ⎠

  and the effect of the 

slip is characterized by the slip parameter 1s . In the 
limiting case 10 0    and sψ → → , the modified Reynolds 
equation (2.23) reduces to the solid case studied by        
Lin et al. (2003). 
 
The variation of non-dimensional steady-state pressure 

0P for different values of couple stress parameter l  is 

depicted in the Fig.. 4. It is observed that 0P  increases for 

increasing values of l . The effect of permeability 
parameter ψ  on the variation of 0P  is depicted in the 

Fig.5. for the aspect ratio = 1.5δ . It is observed that 0P  
decreases for increasing values of ψ . 
 
The variation of non-dimensional steady-load carrying 
capacity sW with the profile parameter λ  is depicted in 
Fig.6 for different values of the couples tress parameter 
l  with   3.0=β  ,  = 1.5δ  and 01.0=ψ  for both 

slip ( 1s =0.5) and no slip ( 1s =0) cases. It is observed that, 

the effect of couple stresses is to increase sW  as 

compared to the corresponding Newtonian case ( l = 0). 
Further it is also observed that the effect of slip on the 

porous interface reduces sW  significantly as compared to 

the no slip case ( 1s =0). The effect of velocity slip is to 
decrease the resistance encountered by the lubricants flow 
in the fluid film gap this leads to the reduction in the load 
carrying capacity sW .   The stronger slip  (larger values 

of 1s ) decreases the resistance of lubricant flow with an 
extent that there is a lesser tendency for lubricant to flow 
through the porous material. It is interesting to note that 
the existence of the critical value cλ  for the profile 

parameter λ  at which the steady-load carrying capacity 
attains maximum. Eg, for l = 0.1 and ψ =0.01. cλ =1.4 

for no slip case and cλ =1.8 for the slip case. Fig.7 

depicts the variation of sW  with aspect ratio δ  for 

various values of the couple stress parameter l  
with = 0.75λ , 3.0=β  and 01.0=ψ . The rapid 

increase in sW  is observed for smaller values of δ  

however the increase in sW  is marginal for larger values 

of δ  (δ >5.0). Further it is observed that the couple 
stress fluid provides an increased non-dimensional steady 
load carrying capacity as compared to the Newtonian case 
( l =0). 
 
Fig.8 depicts the variation of non-dimensional steady- 
load carrying capacity sW  with λ  for different values of 
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permeability parameter ψ  for both slip ( 1s =0.5) and no 

slip ( 1s =0) cases. It is observed that, the effect of ψ  is to 

decrease the value of sW  for both slip and no slip cases. 
When the permeability is very high (larger values of ψ ) 
the porous material becomes the main path of flow and 
hence decreases sW . Further it is observed that the 

critical value of λ , cλ  is a function of the permeability 

parameter, ψ . cλ  increases for increasing values of ψ . 
 
 Fig. 9 depicts the variation of non-dimensional dynamic 
stiffness coefficient dS  with profile parameter λ  for 

various values of the couple stress parameter l  for both 
slip ( 1s = 0.5) and no slip ( 1s = 0) cases. It is observed 

that, the effect of couple stresses is to increase dS  as 

compared to the corresponding Newtonian case ( l = 0). It 
is also observed that, the effect of slip on the porous 
interface reduces dS  significantly as compared to the no 
slip case. Further it is observed that at the critical value of 
λ , the non-dimensional dynamic stiffness coefficient 
attains the maximum value. The variation of dS  with δ  

for various values of couple stress parameter l  is shown 
in Fig.. 10 for both slip and no slip cases. The sharp 
increase in dS  is observed for smaller values of the 

aspect ratio  δ  (0<δ <5) and the increase in dS  is 

marginal for larger values of δ . The variation of dS  

with λ  for different values of the permeability parameter 
ψ  for both slip and no slip cases is shown in the Fig.11. 
It is observed that as permeability parameter ψ  increases, 

the value of dS  decreases. Similar trend is observed for 
no slip case. 
 
Fig. 12 displays the variation of non-dimensional dynamic 
damping coefficient dC  with profile parameter λ  for 

various values of l with β =0.3. It is observed that the 
effect of couple stresses on the dynamic damping 
coefficient is marginal for the larger values of λ . But 
there is a significant increase in the value of dC  for the 
bearing under a smaller profile parameter. It is also 
observed that the significant reduction in the value of dC  

for the slip case  ( 1s = 0.5) as compared to the no slip case 

( 1s = 0). The variation of non-dimensional dynamic 

damping coefficient dC  with aspect ratio δ  for various 

values of  l   with ψ =0.01, 0.75λ =  and β =0.3. It is 

observed that  dC  increases rapidly for smaller values of 

δ (0<δ <4) however marginal increase is observed in 

dC  for larger values of  δ . Further, it is observed that 

the effect of couple stresses is to increase dC  as 
compared to the corresponding Newtonian case. 
 
Fig. 14 depicts the variation of non-dimensional dynamic 
damping coefficient dC  with profile parameter λ  for the 

values of permeability parameter ψ   with l =0.1 and 
β =0.3. It is observed that, the increase in the profile 

parameter λ  decreases the value of dC  and similar trend 
is observed for the no slip case. The larger values of the 
profile parameter λ  ( λ >2.0) have marginal effect on the 
variations of the dynamic damping coefficient, dC . 
 
CONCLUSIONS 

 
The general Reynolds type equation for the porous slider 
bearings with squeezing effects is derived for the couple 
stress fluids on the basis of Stokes micro-continuum 
theory for the couple stress fluids by using the modified 
B-J-slip boundary conditions on the fluid-porous 
interface. The numerical results are obtained for the finite 
porous inclined slider bearings. On the basis of the results 
presented, the following conclusions are drawn: 
 
1. The critical value of the profile parameter λ , cλ  

exists such that the steady-state load carrying 
capacity sW , the dynamic stiffness coefficient dS  

attains maximum at cλ  

2. The critical value of the profile parameter cλ is a 
function of the permeability parameter ψ  and this 
dependence is more pronounced for the no slip case. 

3. The presence of porous facing on the slider decreases 
the sW , dS  and dC  

4. The couple stress fluid lubricants provide an 
increased steady-load carrying capacity, dynamic 
stiffness and decreases the dynamic damping 
coefficient. These effects are more pronounced for 
larger values of the aspect ratio.  
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NOMENCLATURE 
 
a difference between inlet and outlet film thickness 
B width of the bearing 
Cd damping coefficient,  
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dC  non-dimensional damping coefficient
3

0
3

d mC h
L Bµ

⎛ ⎞
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⎝ ⎠
 

h film thickness function 
hm minimum film thickness at the outlet 
hs slider profile function 
hm0 steady-state minimum film thickness at the outlet 
k  permeability of the porous material 
l couple stress parameter 
l  non-dimensional couple stress parameter ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

0mh
l  

L length of the bearing 
p dynamic film pressure 
p  non-dimensional dynamic film pressure
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δ  aspect ratio (=B/L) 
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Sd stiffness coefficient,  

dS   non-dimensional stiffness coefficient 
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t time 
u, v, w velocity components 
U sliding velocity of the lower part 
Ws steady load carrying capacity,  

sW  non-dimensional steady load carrying 
capacity
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Wd perturbed film force,  

dW  non-dimensional perturbed film force
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x, y, z Cartesian rectangular coordinates 
β  ratio of microstructure size to the pore 

size ( )( )k/ /µη=  
ε  small amplitude of oscillation 
η  material constant responsible for the couple stress 

property 
ρ  lubricant density  
∇  gradient operator 

λ  non-dimensional profile parameter of the bearing 
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µ  classical viscosity coefficient 

ψ  permeability parameter
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Dt
D

 material derivative  


