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ABSTRACT 

 

It is pointed out that at present there is no complete theory of the top that answers all questions. This theoretical work 

provides a complete mathematical description of the top, including equations of top dynamics at any speeds. New well-

known experiments that currently do not have any explanation are considered in details. The resulting equations use the 

fact disputed by today's science that the Coriolis force and the centrifugal force are real forces that do work. The 

coincidence of the calculation results and experiments is a proof of this fact.  
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INTRODUCTION  

 

The question of why the top does not fall is constantly 

raised despite the fact that there is a well-founded theory 

of how the top works. This question is not new. It was 

asked in 1890 by Prof. John Perry (Perry, J. 1890. 

Spinning Tops. The "Operatives' Lecture" of the British 

Association Meeting at Leeds, UK, 6th September, 1890, 

https://www.gutenberg.org/ebooks/34268, page 93). He 

wrote “... in a spinning top, obviously, only with rotation 

does life and stability appear, or, in other words, only 

then do forces act that oppose the earth's gravity, which 

tends to overturn the spinning top. Where do these forces 

come from and how are they explained?” The questioner 

intuitively feels that the initial push cannot give the 

energy that is needed for a long and vigorous rotation. 

Also, the questioner intuitively feels that there must be a 

real force that keeps the top from falling. However, the 

theory explains why it spins, and the unspoken sounds 

like answer is "doesn't fall because it spins." But maybe 

our intuition is deceiving us and the spinning top actually 

has enough energy? This issue first of all will be 

discussed below. 

 

THE STATE EQUATIONS 

 

Figure 1 shows a spinning top in its simplest form. The 

spinning top has 

 rotation of the top around its own vertical axis at the 

angular speed ω1, 

 rotation of a top inclined at an angle α to the plane 

around its own axis at the angular speed ω2, 

 precession on the circumference of a top inclined at an 

angle α to the plane, at the angular speed ω3. 
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Fig. 1. The simplest form of the spinning top.  

 

Table 1 lists the parameters of the state of the top at the 

initial moment 1 and at the moment 2, when the top is in a 

position at which the angle α < π/2. At moment 1, there is 

only rotation around the vertical axis. At moment 2, a 

precession additionally appears. 

 

Let us write down for moment 2 the equations of the laws 

of conservation of momentum L and energy W, which do 

not depend on how and by what forces the top passed into 

this state: 

 

𝐿2 + 𝐿3 = 𝐿1  (1) 

𝑊2 + 𝑊3 = 𝑊1   (2) 

_____________________________________________________________________ 
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Table 1. The formulas. 

 

Angular 

speed 

Moment of 

inertia 

Angular 

momentum 

Kinetic energy 

ω1 𝐽1 =
𝑚𝑅2

2
 

 

𝐿1 = 𝐽1𝜔1  
 

𝑊1 =
1

2
𝐿1𝜔1 

 

=
1

4
𝐽1𝜔1

2 
 

=
1

8
𝑚𝑅2𝜔1

2 
 

ω2 𝐽2 = 𝐽1  
 

𝐿2 = 𝐽2𝜔2  
 

𝑊2 =
1

2
𝐿2𝜔2 

 

=
1

4
𝐽2𝜔2

2 
 

=
1

8
𝑚𝑅2𝜔2

2 
 

ω3 

𝐽3 = 𝑚𝑞  
,  

where 

𝑞 = ℎ2 −  
2

𝜋
ℎ2 − 𝑅2 𝛼 

,  

see formula (7) 

 𝐿3 = 𝐽3𝜔3  
 

  
𝑊3 =

1

2
𝐿3𝜔3 

 

=
1

4
𝐽3𝜔3

2 
 

=
1

4𝑎
𝑚𝑅2𝜔3

2  
 

 

 

Here we determine the parameters of the state of the 

spinning top at moments 1 and 2. Table 1 lists the basic 

formulas, where the following notation is accepted:  

α is the angle of inclination of the spinning top to the 

rolling plane, 

m is the spinning top mass, 

g is the acceleration of gravity, 

mg is gravity, 

R is the spinning top radius, 

h is the spinning top height (segment OB in Fig. 1),  

ω1 is the angular speed of spinning top rotation around the 

vertical diameter at moment 1, 

ω2 is the angular speed of spinning top rotation around the 

vertical diameter at moment 2, 

ω3 is the angular speed of precession at moment 2, 

v is the linear speed of precession, 

L is the angular momentum, 

J is the moment of inertia, 

W is energy. 

 

Substituting the equations listed in Table 1 into equations 

(1) and (2), we get: 
 

𝐽2𝜔2 + 𝐽3𝜔3 = 𝐽1𝜔1   (3) 

1

2
𝐽2𝜔2

2 +
1

2
𝐽3𝜔3

2 =
1

2
𝐽1𝜔1

2 
 

 

(4) 

 

where  

 

ω1 and ω2 are the angular speeds of rotation of the top at 

moments 1 and 2 around the axis, which is the rod, 

ω3 is the angular speed of precession around the vertical 

axis, 

J1, J2, and J3 are the moments of inertia during rotation at 

the corresponding speeds ω1, ω2, and ω3. 

L1, L2, and L3 are the angular momenta during rotation at 

the corresponding speeds ω1, ω2, and ω3. 

 

The moments of inertia are 

 

𝐽1 = 𝐽2 = 𝑚
𝜋𝑅2

2
 
 

 

(5) 

 

The moment of inertia J3 changes depending on the angle 

α (Figure 2). For α = 0, this moment can be taken equal to 

J3 = mh2. For α = π/2 this moment is J3 = J2 by the Steiner 

theorem. So,  

 

𝐽3 𝛼 =  
𝑚ℎ2        if 𝛼 = 0

𝑚
𝜋𝑅2

2
    if 𝛼 =

𝜋

2

 

 

 

(6) 
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Fig. 2. The changes in the inertia moment J3 in 

dependence on the angle α.  

 

 

We will assume that this function is linear. Then we get: 

 

𝑞 = 𝐽3 𝑚 = ℎ2 −  
2

𝜋
ℎ2 −𝑅2 𝛼 

 

 

(7) 

 

From formulae (3), (5), and (7) we find: 

 

𝑞𝜔3 =
1

2
𝜋𝑅2 𝜔1 −𝜔2  

 

 

(8) 
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Substituting equalities (1), (5), (7), and (8) into formula 

(4), we find that  

 
1

4
𝜋𝑅2 𝜔2

2 −𝜔1
2 +

1

4
𝑞𝜔3

2 = 0 
 

 

(9) 

 

or 

 

𝜋𝑅2 𝜔2
2 −𝜔1

2 + 𝑞𝜔3
2 = 0  (10) 

 

Combining formulas (8) and (10), we can obtain that 

 

𝜋𝑅2 𝜔2
2 −𝜔1

2 +  
1

2
𝜋𝑅2 𝜔1 − 𝜔2  

2

𝑞 = 0 
 

 

(11) 

 

or 

 

4𝜋𝑅2 𝜔2
2 −𝜔1

2 + 𝜋2𝑅4  𝜔1 −𝜔2 
2 𝑞 = 0  (12) 

 

or 

 

𝑎 𝜔2
2 −𝜔1

2 + 𝑏 𝜔1 −𝜔2 
2 = 0  (13) 

 

where it is obvious that  

 

𝑎 = 4𝜋𝑅2 ,𝑏 = 𝜋2𝑅4 𝑞   (14) 

 

Regrouping formula (13), we get the following equation 

to find the ω2 in dependence on the ω1: 

 

𝜔2
2 𝑎 + 𝑏 − 2𝑏𝜔1𝜔2 +𝜔1

2 −𝑎 + 𝑏 = 0  (15) 

 

Resolving equation (15), we find: 

 

𝜔2 =
1

2 𝑎 + 𝑏 
 2𝑏𝜔1 ± 4𝑏2𝜔1

2 − 4 𝑎 + 𝑏  𝜔1
2 −𝑎 + 𝑏    

 

=
1

2 𝑎 + 𝑏 
 2𝑏𝜔1 ± 4𝑏2𝜔1

2 − 4 𝑏2 − 𝑎2 𝜔1
2  

 

=
1

2 𝑎 + 𝑏 
 2𝑏𝜔1 ± 4𝑎2𝜔1

2  
 

 

As a result, we have  

 

𝜔2 =
 𝑏 ± 𝑎 

 𝑎 + 𝑏 
𝜔1  

 

 

(16) 

 

Physically, there is a solution of the following form:  

 

𝜔2 =
 𝑏 − 𝑎 

 𝑎 + 𝑏 
𝜔1  

 

 

(17) 

 

Using formulas (17) and (8), we can finally get that 

 

𝑞𝜔3 =
𝜋𝑅2

2
 𝜔1 − 𝜔2 =

𝜋𝑅2

2
 𝜔1 −

 𝑏 − 𝑎 

 𝑎 + 𝑏 
𝜔1  

 

=
𝜋𝑅2

2

2𝑎

 𝑎 + 𝑏 
𝜔1 = 𝜋𝑅2

4𝜋𝑅2

 𝑎 + 𝑏 
𝜔1 =

4𝜋2𝑅4

 𝑎 + 𝑏 
𝜔1 

 

 

 

(18) 

 

or 

 

𝜔3 =
4𝜋2𝑅4

 𝑎𝑞 + 𝑏 
𝜔1 =

4𝜋2𝑅4

 𝑎𝑞 + 𝜋2𝑅4 
𝜔1  

 

=
4𝜋2𝑅4

 4𝜋𝑅2𝑞 + 𝜋2𝑅4 
𝜔1 =

𝜋𝑅2

 𝑞 + 𝜋𝑅2/4 
𝜔1  

 

 

 

(19) 

 

or 

 

𝜔3 = 𝜋𝑅2
1

 𝑞 + 𝜋𝑅2/4 
𝜔1 

 

 

(20) 

 

Consider the particular cases shown in Figure 2. At the 

same time, from definitions (7), (14), (17), (20) we find: 

 

𝑞 𝛼 ≈  
ℎ2        if 𝛼 ≈ 0
1

2
𝜋𝑅2  if 𝛼 ≈

𝜋

2

 

 

 

(21) 

 

𝑏 𝛼 ≈  
𝜋2𝑅4 ℎ2    if 𝛼 ≈ 0

2𝜋𝑅2            if 𝛼 ≈
𝜋

2

 

 

 

(22) 

 

𝜔2 𝛼 ≈

 
 

 
 ℎ2 − 4𝜋𝑅2 

 ℎ2 + 4𝜋𝑅2 
𝜔1    if 𝛼 ≈ 0

−
1

3
𝜔1                if 𝛼 ≈

𝜋

2

 

 

 

 

(23) 

 

𝜔3 𝛼 =

 
 

 
𝜋𝑅2

 ℎ2 + 𝜋𝑅2/4 
𝜔1      if 𝛼 ≈ 0

4

3
𝜔1                      if 𝛼 ≈

𝜋

2

 

 

 

 

(24) 

 

 

THE FORCES ACTING ON THE SPINNING TOP 

 

The resulting formulas show the change in the speed of its 

own rotation and the precession speed of the top in the 

process of falling, i.e. the change in the angle α from π/2 

to 0. The top goes into an inclined position under the 

action of gravity force mg. But at the same time, the 

Coriolis force and the centrifugal force act on the top, 

depending on the rotation speeds and therefore changing 

their value depending on the α. These forces counteract 

the force of gravity and therefore, the spinning top falls 

very slowly. Obviously, with such deceleration, the 

source of the Coriolis force and centrifugal force 

consumes energy. Therefore, there is an energy source for 

this force. But this assumption is hampered by the 
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persistent modern notion that the Coriolis force is a 

fictitious force. A fictitious force cannot deliver energy... 

 

Let us consider these forces. The Coriolis force is  

 

𝐅𝟐 = −2𝑚𝛚𝟐 × 𝐯  (25) 

 

where v is the linear speed of precession. This is the speed 

of movement of p. Point B on the radius AB rotates at the 

angular speed ω3 (Figure 1): 

 

𝑣 = 𝜔3ℎcos 𝛼   (26) 

 

In addition, the following centrifugal force acts on the top 

directed horizontally along AB from the center: 

 

𝐹3 = 𝑚𝜔3
2ℎcos 𝛼   (27) 

 

At each moment of time, the forces acting on the top are 

F2, F3, and the following force of gravity: 

 

𝐹4 = −𝑚𝑔  (28) 

 

which directed vertically down. Thus, at each moment of 

time, the following total force acts on the top: 

 

𝐹𝑠 = 𝐹2 + 𝐹3 + 𝐹4  (29) 

 

The horizontal and vertical projections of this force will 

be denoted as Fsx and Fsy, respectively. The force Fsy 

creates an overturning moment of rotation of the top 

around the pivot point. This moment is equal to 

 

𝑀 = ℎ𝐹𝑠𝑥sin 𝛼 − ℎ𝐹𝑠𝑦cos 𝛼  
 

(30) 

 

In addition, the force Fs creates a pressure force on the 

pivot point, which is directed along the bar and equal to 

 

𝑇 = −ℎ𝐹𝑠𝑥cos 𝛼 − ℎ𝐹𝑠𝑦sin 𝛼  
 

(31) 

 

Using these formulas, one can find both the 

aforementioned forces and the moment of rotation as 

functions of the angle α found at the known speeds in the 

previous section.  

 

There is a certain angle α0 at which the top takes a stable 

position, maintaining this angle of inclination α0 for a 

long time. For α = α0, we have the function M(α) = 0 and 

the following derivative: 

 

𝑑𝑀(𝛼)  𝑑𝛼 < 0   

 

These conditions allow us to find the angle α0 from the 

graph of the function M(α). 

 
 

SEVERAL EXAMPLES  

 

Figures 3, 4, 6, and 8 in Examples 1, 2, 3, and 4 show the 

following functions of the argument α: 

F2x is the horizontal projection of the Coriolis force, 

F2y is the vertical projection of the Coriolis force, 

F3 is the horizontal centrifugal force, 

FSx is the total horizontal force, 

FSy is the total vertical force, 

M is the torque, 

T is the pressure force on the hinge in the bar direction, 

om1, om2, om3 are the angular velocities ω1, ω2, ω3, 

respectively. 

The color of the graph line is indicated in the parentheses: 

(b) is for the blue color, (r) is for the red, (g) is for the 

green. 

 

Example 1. 

In this example, the functions listed above are found at h 

= 0.6; R = 0.15; ω1 = 6.5, m = 1 (Fig. 3). The dotted 

vertical (light blue line) in the lower left figure highlights 

the point where α0 = 0.33. At this point, we have the 

function M(α) = 0 and its derivative dM(α)/dα < 0. 

Therefore, at this point the top is in a stable position. 

 

 
Fig. 3. The functions for the following parameters’ 

values: h = 0.6, R = 0.15, ω1 = 6.5, m = 1. 

 

Example 2. 

In this example, these functions listed above are found at 

h = 0.8; R = 0.15; ω1 = 5.5, m = 1 (Fig. 4). The dotted 

vertical (light blue line) in the lower left figure highlights 

the point where α0 = 1.04. At this point, there are the 

function M(α) = 0 and its derivative dM(α)/dα < 0. 

Therefore, at this point the top is also in a stable position.  

 

The practical implementation of such cases, which are 

considered in Examples 1 and 2, are ordinary top toys. 

Another option is shown in Figure 5 below that was 

borrowed from the following video experiment (Flying 
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spinner: 

https://www.youtube.com/watch?v=rDDfKVjjG2g). 

 

 

 
Fig. 4. The functions for the following parameters’ 

values: h = 0.8, R = 0.15, ω1 = 5.5, m = 1. 

 

Fig. 5. The flying spinner experiment.  

 

Example 3. 

In this example, the functions listed above are found at h 

= 0.8; R = 0.2; ω1 = 60, m = 1 (Figure 6). The dotted 

vertical (light blue line) in the lower left figure highlights 

the point where α0 = π/2. At this point, the function M(α) 

= 0 and its derivative dM(α)/dα < 0. Therefore, at this 

point the top is also in a stable position. 

 

 
Fig. 6. The functions for the following parameters’ 

values: h = 0.8, R = 0.2, ω1 = 60, m = 1. 

 

The practical implementation of this case, i.e. when the 

barbell of top is in a vertical position, and the disk is 

horizontal, can be found on the Internet (Figure 7). It can 

be seen that the top in this case hangs motionless in the 

air, i.e. the vertical force acting on the top is equal to zero. 

In our example, the reader can also see that the vertical 

force acting on the top is equal to zero (the F2x force 

graph in the upper left figure in Figure 6). 

 

 

Fig. 7. The wheel experiment.  

 

Example 4. 

In this example, the functions listed above are found at h 

= 0.6; R = 0.15; ωl = 6.9 (Fig. 8). The dotted vertical 

(light blue line) in the lower left figure highlights the 

point where α0 = 0. At this point, the function M(α) = 0 

and its derivative dM(α)/dα < 0. Therefore, at this point 

the top is also in a stable position. 

 



Canadian Journal of Pure and Applied Sciences 5692 

 
Fig. 8. The functions for the following parameters’ 

values: h = 0.6, R = 0.15, ω1 = 6.9. 

 

The practical implementation of this case, i.e. when the 

barbell of top is in a horizontal position and the disk is 

vertical, is considered in many video experiments, for 

instance, Figure 9 from (The experiment concerning 

wheel versus gravity at the University of Sydney: 

https://www.youtube.com/watch?v=GeyDf4ooPdo) and 

Figure 10 from (Beletsky, I. Gyroscope loses its weight? 

https://www.youtube.com/watch?v=FwrlRpC8BDA) and 

(Professor Eric Laithwaite gives a demonstration of a 

large gyro wheel: 

https://www.youtube.com/watch?v=JRPC7a_AcQo). It 

can be seen that the top in this case rotates on a horizontal 

rod. The measurements in (Beletsky, I. Gyroscope loses 

its weight? 

https://www.youtube.com/watch?v=FwrlRpC8BDA) 

show that its top weight is equal to zero. There are no 

explanations. In our example, the reader can also see that 

the vertical force acting on the top is equal to zero (the 

F2x force graph in the upper left figure in Figure 8). Thus, 

both practically and theoretically it is shown that in this 

position the top is weightless. 

 

Such an experiment is also considered in (Provatidis, 

2021) with reference to (Professor Eric Laithwaite gives a 

demonstration of a large gyro wheel: 

https://www.youtube.com/watch?v=JRPC7a_AcQo). The 

article begins by stating that for such a device "the 

detailed mechanics of which are still an enigma". The 

author of this article has developed three new Euler 

equations that are much longer than those found in 

textbooks. The resulting nonlinear equation is modeled in 

the MATLAB system to obtain and visualize a numerical 

solution. Under certain conditions, providing small 

oscillations of the gyroscope axis (maximum oscillation 

of eight degrees in the angle of inclination) near the 

horizontal plane through the fulcrum, linearization is 

performed, which is successfully compared with the 

above-mentioned nonlinear numerical solution. Provatidis 

argues that the numerical solution under certain 

conditions «is crucial to the debate about whether such 

an engine may produce a net thrust, or not. A relevant 

paradox is resolved». The question of where the source of 

forces is up in the air, as is the device in question. 

 

 

Fig. 9. The very heavy wheel versus gravity at the 

University of Sydney. 

 

 

Fig. 10. The other wheel.  

 

DYNAMICS 

 

Above we considered a sequence of static states that 

differ in the value of the angle α. In the simplest case, we 

can assume that the top stays in a position with given α 

for a time inversely proportional to the overturning 

moment M. Under this assumption, we can calculate the 

duration of the top in position α by the following formula: 

 

𝑡 𝛼 = 1/Abs 𝑀 𝛼    
(32) 
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The duration of the fall of the top from the position α = 

π/2 to the given position α is determined by the following 

formula: 

 

Т 𝛼 =  𝑡 𝛼 𝑑𝛼
𝛼

𝜋/2

 
 

 

(33) 

 

The stable position α0, as mentioned, is determined by the 

following conditions: M(α0) = 0 and dM(α0)/dα < 0. The 

top remains in this position until the friction against the 

air reduces its kinetic energy. 

 

Example 5. 

Consider Example 2 and Figure 4. Under the conditions 

of this example, we construct the functions t(α), Т(α), 

M(α) shown in Figure 11. The left border of the graphs 

corresponds to the steady position of the top. 

 

 
Fig. 11. The functions t(α), Т(α), M(α). 

 

 

Let us now consider the equations written above, taking 

into account the equation of the dynamics of the rotational 

motion of a rigid body around a fixed axis, which has the 

following form: 

 

𝑀0 = 𝐽0
𝑑𝜔0

𝑑𝑡
 
 

 

(34) 

 

where 

 

M0 is the moment of forces acting on the body, 

J0 is the moment of inertia of a rotating body, 

ω0 is the angular velocity of body rotation. 

 

The top performs two rotations simultaneously and its 

equivalent moment of inertia J1 and the equivalent 

rotation speed ω1 are connected with the moments of 

inertia and the speeds of the terms of the rotations by 

equation (3) of the momentum conservation law. 

Therefore, in our case formula (34) takes the following 

form: 

 

𝑀 = 𝐽1
𝑑𝜔1

𝑑𝑡
 
 

 

(35) 

 

where M is the overturning moment of the top, considered 

above. Then 

 
𝑑𝜔1

𝑑𝑡
=
𝑀

𝐽1
 
 

 

(36) 

 

Using the formulae listed in Table 1, it is possible to 

demonstrate that 

 

𝐽1 =
1

2
𝑚𝑅2 

 

 

(37) 

 

Hence, 

 
𝑑𝜔1

𝑑𝑡
=

2𝑀

𝑚𝑅2
 
 

 

(38) 

 

This means that the speed ω1 given at the initial moment 

changes according to the dependence demonstrated by 

formula (38) from the overturning moment of the forces. 

With a large mass of the top, acceleration (38) can be 

considered equal to zero and the abovementioned method 

for calculating the top can be used. Taking into account 

acceleration (38), the calculation of the dynamics of the 

top should be performed according to the following 

algorithm: 

 

1. At the initial moment, we have α = π/2, ω1 = ω10, and 

M = 0. 

2. The set of equations (3) and (4) is resolved, as shown 

above, and thus the speeds  are determined. 

3. The moment M is calculated as shown above. 

4. Both the conditions such as M = 0 and dM⁄dα < 0 are 

checked. The fulfillment of these conditions means 

that the top has passed into a steady state and the 

calculation is terminated. 

5. The new value of α = αold + Mdα is calculated. 

6. dω1/dt is calculated using formula (38) with the 

obtained value of M. 

7. The new value of ω1 = ω1old + (dω1/dt)dt is calculated. 

8. Go to step 2. 

 

In equation (4), consider the left term such as J1ω1
2/2. It 

corresponds to the total kinetic energy of the top. Since 

(as follows from the algorithm) the speed ω1 changes, the 

kinetic energy of the top also changes: It can decrease and 

increase. The power delivered by the overturning moment 

in a given position of the top depends on α and is defined 

as 
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𝑃 𝛼 = 𝑀 𝛼 𝜔1 𝛼   (39) 

 

DISCUSSION 

 

The algorithm for calculating the dynamics of a top is 

based on the use of the equation of dynamics of rotational 

motion of a rigid body and the laws of conservation of 

momentum and energy. In addition, it uses the notion that 

Coriolis forces and centrifugal forces are real forces. Such 

an action of the Coriolis forces and centrifugal forces is 

possible only if they can do work, i.e. they are real 

powers. This proves the reality of these forces. On the 

other hand, a mathematical proof of this fact is given in 

(Khmelnik, 2022). It shows that these forces can be 

justified as a consequence of Maxwell's equations for 

gravitomagnetism, and the energy source for these forces 

is the Earth's gravitational field. But even in the absence 

of such evidence, there are many doubts about the 

assertion that these forces are fictitious (Astakhov, 2006). 

Another proof of the reality of these forces is the 

explanation of many astronomical facts found in 

(Ermolin, 2017) using the Coriolis forces. 

 

The author is repeatedly pointed out the MEPhI 

experiment (a ball rolling on a rotating platform: 

https://www.youtube.com/watch?reload=9&v=LkrmALM

8TsA) demonstrated at the National Research Nuclear 

University MEPhI (Moscow Engineering Physics 

Institute, Russia) in which the fictitiousness of the 

Coriolis force is convincingly proved (Fig. 12). Consider 

this proof. But first of all, the author wants to note that the 

author is not criticizing the lecturer, nothing personal. The 

experimenter is one of the best teachers in Russia at one 

of the best physics institutes in Russia. 

 

 

Fig. 12. The proof of the Coriolis force.  

 

The disk rotates with an angular speed ω. The ball is 

pushed out by the experimenter from the central hole 

along the radius R of the disk and moves along the radius 

under the action of the inertial force Fi at a linear speed v. 

In this case, the Coriolis force Fс perpendicular to the 

radius R acts on it. As a result, the ball describes a spiral, 

moving in the direction opposite to the rotation of the disk 

(therefore, we cannot suspect that the disk is pulling it 

with the force of friction). The force that pulls the ball 

tangentially is the Coriolis force:  

 

𝐅с = −2𝑚𝛚× 𝐯  (40) 

 

The question is, where did this power come from? 

 

Further, the experimenter argues that this force appeared 

because the ball moves in a coordinate system associated 

with a rotating disk, and the angular speed ω of the disk is 

present in formula (40). The experimenter is one of the 

best teachers in Russia at one of the best physics institutes 

in Russia. Modern Physics speaks through him. 

 

We can suggest a modification of the experiment. Let 

there be a thin plane above the disk and let the ball lie on 

this plane. At the same time, we completely exclude the 

mechanical influence of the disk. Only the coordinate 

system of the disk remains. So, we push the ball and bring 

the rotating disk to the plane. In this case, the Coriolis 

force appears, moving the ball. No fraud! No wonder 

because there really is no power. The question of where 

this power came from is superfluous. Such is nature, says 

physics. Physics is fine with that. But how can a physicist 

accept such an explanation?! It would be more honest to 

admit that physics has no explanation and it must be 

sought. Or, following the example of Mach, it is possible 

to assume the influence of celestial bodies. 

 

But in this experiment, the explanation is much simpler. 

The ball, lying in the central hole, rotates together with 

the disk with an angular speed ω and continues to rotate 

after the central impact of the experimenter. The speed ω 

in formula (40) is the speed of the ball but not the disk. 

 

It is the lack of a clear answer to the question “where does 

the power come from?” and led to the emergence of such 

a theory: It was necessary to find the answer so that the 

students respected the teachers! It would be possible not 

to build hypotheses about the nature of this force (as 

Newton did with the force of inertia). But the times at that 

time were, apparently, not the same. And off we go. The 

force was not recognized as real, but fictitious and 

incapable of doing work. The following physicists had to 

show miracles of ingenuity in order to find both the 

coordinate system due to which the Coriolis force 

appeared and the source of energy that works for it. This 

issue is considered in detail by Astakhov (2006). 

 

CONCLUSION 

 

An algorithm for calculating the dynamics of a top is 

proposed. It can be used at any top rotation speed. It 

allows us to explain known but still unexplained 

experiments. It explains, in particular, the increase in 

weight and energy of the spinning top. This article also 
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gives a mathematical description of the top, which is still 

missing, which uses the known facts of mechanics and the 

notion of the Coriolis force, which is NOT accepted in 

mechanics, as a real force. 
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